US ACTIVE DEBRIS REMOVAL (ADR) EFFORTS

DR. DARREN MCKNIGHT

VIENNA UN COPUOS FEBRUARY 2013
This presentation solely represents the opinions of the author and should not be construed as being endorsed or validated by the US Government.

- This information reflects efforts that have been conducted and does not address planned future US investments.
USG National Space Policy (June 2010) called for NASA and DoD to pursue R&D on ADR, reducing hazards, and increasing understanding of debris environment.

NASA
- Centralized funding and policy implementation through NASA/HQ.
- Johnson Space Center is center of excellence for orbital debris mitigation.
 - Several other centers and Office of Chief Technologist have unique contributions.
- Space Technology Program applying resources for concept exploration and technology development.

DoD
- ADR activities performed largely in labs (NRL, APL, AFRL, etc.) and the Defense Advanced Research Programs Agency (DARPA).

Regular (at least annual) NASA/DoD OD Working Group meetings cover a full range of OD efforts to include ADR.
US ADR EFFORTS BY LIFE CYCLE

<table>
<thead>
<tr>
<th>General Concept</th>
<th>Analytic Modeling</th>
<th>Policy Formulation</th>
<th>System Solutions Development</th>
<th>Technology Demos</th>
<th>System Acquisition</th>
<th>Legal/Policy/Insurance Adjudication</th>
<th>Operational Use</th>
</tr>
</thead>
</table>

Next Three Charts

- PALAPA-B2, WESTAR-6, LDEF, and HST
- ?
- ?
- ?

Foundational research papers by Johnson and Liou on ADR, 2009 and 2011

Rendezvous, grappling, and retrieval/servicing missions
Evaluation of Possible ADR Methods

2009 Conference in US - Catalyst to Discussions

<table>
<thead>
<tr>
<th>Debris object class</th>
<th>Removal method</th>
<th>Orbit</th>
<th>Feasible physics</th>
<th>Encounter velocity</th>
<th>Anti-collision maneuver?</th>
<th>Units needed</th>
<th>Acceptable</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Propulsive tug</td>
<td>Any</td>
<td>Yes</td>
<td>Near 0</td>
<td>Yes</td>
<td>< 10</td>
<td>Yes</td>
<td>Large amounts of delta-v, object capture, rotating objects</td>
</tr>
<tr>
<td>Large</td>
<td>Inflatable drag device</td>
<td>LEO</td>
<td>Yes</td>
<td>NA</td>
<td>No</td>
<td>10s per year</td>
<td>No</td>
<td>Collision with active or other large debris</td>
</tr>
<tr>
<td>Large</td>
<td>Solar sail</td>
<td>GEO</td>
<td>Maybe</td>
<td>NA</td>
<td>No</td>
<td>10s per year</td>
<td>No</td>
<td>Low mass object capture mechanism</td>
</tr>
<tr>
<td>Large</td>
<td>Electrodyanmic tether</td>
<td>LEO</td>
<td>Maybe</td>
<td>TBD</td>
<td>Maybe</td>
<td>< 10</td>
<td>No</td>
<td>Complex control, dynamic stability, debris object capture method</td>
</tr>
<tr>
<td>Large</td>
<td>Momentum tether</td>
<td>Any</td>
<td>Maybe</td>
<td>TBD</td>
<td>Maybe</td>
<td>< 10</td>
<td>No</td>
<td>Complex control, dynamic stability, debris object capture method</td>
</tr>
<tr>
<td>Large, Medium</td>
<td>Ground based laser</td>
<td>LEO</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>Engagement geometry, laser physics, detection & tracking</td>
</tr>
<tr>
<td>Large, Medium</td>
<td>Space based laser</td>
<td>LEO</td>
<td>No</td>
<td>NA</td>
<td>< 10</td>
<td>No</td>
<td>No</td>
<td>Engagement geometry, laser physics, detection & tracking</td>
</tr>
<tr>
<td>Medium</td>
<td>Passive sweeper</td>
<td>LEO</td>
<td>Yes</td>
<td>Up to 11 km/s</td>
<td>No</td>
<td>45,000</td>
<td>No</td>
<td>Infrequent debris encounters, collision with active or other large debris</td>
</tr>
<tr>
<td>Medium</td>
<td>Active sweeper</td>
<td>LEO</td>
<td>Yes</td>
<td>Up to 11 km/s</td>
<td>Yes</td>
<td>100</td>
<td>No</td>
<td>Need large numbers, large delta-v, advanced sensors</td>
</tr>
<tr>
<td>Medium</td>
<td>Liquid, Gas, Particulate cloud</td>
<td>LEO</td>
<td>Yes</td>
<td>Up to 11 km/s</td>
<td>No</td>
<td>10,000s</td>
<td>No</td>
<td>Need large numbers, effect on operational spacecraft</td>
</tr>
<tr>
<td>Medium</td>
<td>Electromagnetic</td>
<td>Any</td>
<td>Maybe</td>
<td>Up to 11 km/s</td>
<td>Yes</td>
<td>100s to 1,000s</td>
<td>No</td>
<td>Massive device, complex encounter geometry, detection & tracking, object composition</td>
</tr>
</tbody>
</table>

Scores and metrics are outdated
FOUR “MAINSTREAM” AREAS

- **EDDE (ElectroDynamic Debris Eliminator)**
 - E-tether uses Earth’s magnetic field to create propulsive force
 - Use force to both rendezvous for grappling and to move derelict
 - Some partially successful testing in the past

- **GOLD (Gossamer Orbit Lowering Device)**
 - Inflatable
 - Simple, effective
 - Better long-term collision risk than any ADR system except for propulsive tug

- **Solar Sail**
 - Uses solar photon pressure to move derelicts
 - Similar systems deployed previously but not for operational ADR applications
 - Fragile and slow process

- **Propulsive Tug**
 - Traditional propulsion system still the most mature capability
 - High impulse and controllability for reentry risk mitigation
 - Exemplar for several satellite servicing initiatives
THREE “NICHE” EFFORTS

- **Laser Removal from ground or space**
 - No need to detumble or even go to space for groundbased version
 - Physics of dwell time and laser interaction are unproven
 - Feasibility for ADR unclear

- **Geosynchronous Large Debris Reorbiter (GLiDeR)**
 - Contactless-coupling plus ion thrusters in GEO only
 - No need to detumble
 - Unproven, limited applications
 - Deposit in GEO graveyard, not deorbit

- **Tungsten Dust**
 - Remove derelicts by depositing tons of dust in space to “wash out” medium-large debris
 - Significant effects on operational spacecraft
 - Feasible only for “start over” mode
ORGANIZING ADR OPTIONS

- **Orbital** solution creates potential risk to create more orbital debris via **ballistic** (i.e. sub-orbital) system
- Options viable for certain **orbital regions**: LEO, GTO, and/or GEO
- Needing **propellant to rendezvous** adds cost/weight
- Needing **propellant to remove** adds cost/weight
- It is important to be able to **control deorbiting** to minimize risk to people on the ground
- Technology readiness level (TRL) provides measure of programmatic risk and potential investment needed to make operational
- **Cost per object removed** determines financial efficacy of approach
- **Cost per collision prevented** is a broader metric that may motivate examination of “other” approaches... such as just-in-time collision avoidance (JCA)
ADR-RELATED OBSERVATIONS

PERSONAL THOUGHTS

• 1. Need to examine **metric for success for ADR** for large derelict objects
 • Environmental stability is the common factor discussed but reduction in satellite operational lifetimes from collisions with nontrackable/lethal debris fragments might be more relevant

• 2. **Detumbling** of derelicts is often overlooked
 • May be significant component of solution

• 3. Include Just-in-Time Collision Avoidance (JCA) with ADR for “**derelict collision prevention**” mission space
1. **Identify**: Ground and orbital systems detect imminent collision.
2. **React**: Air-launch system is mobilized with JCA system on board.
3. **Deflect**: JCA system is deployed to induce a slight change in the orbit of one of the objects involved by deploying cloud of high density gas.
4. **Prevent**: If the object’s orbit is changed enough the collision will be prevented.
PREVENTING DERELICT COLLISIONS
ADR AND JCA

Removal

Active Debris Removal (ADR)
- Requires many launches
- Requires grapple/detumble
- Execute over decades
- Manage reentry risk

STRATEGIC - Statistical

Avoidance

Just-In-Time CA (JCA)
- Want low false alarms
- Need enhanced el set accuracy
- Hourly/daily response
- No reentry risk

TACTICAL - Deterministic
ADR AND JCA

BOTH ARE DIFFICULT AND EXPENSIVE

<table>
<thead>
<tr>
<th></th>
<th>ADR</th>
<th>JCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of objects
moved/removed per collision prevented</td>
<td>~30-50</td>
<td>~5-3,000</td>
</tr>
<tr>
<td>Costs per collision prevented</td>
<td>~$100M's-$B's</td>
<td>~$10M's-$10B's</td>
</tr>
<tr>
<td>Game Changer(s)
Needed</td>
<td>10s-100s of derelicts removed per launch</td>
<td>Improve el set accuracy by 25x (250m→10m) and ballistic launch less than $1M</td>
</tr>
</tbody>
</table>
PARTING THOUGHT
“PAY ME NOW OR PAY ME MORE LATER”

• Timing for ADR...
 1) research and development;
 2) demonstrations;
 3) industry scale-up;
 4) legal/policy evolution and codification;
 5) operations and maintenance; and
 6) accrued benefits

are uncertain.

• Tradeoff between acting too soon or acting too late needs to be examined.