

ACTIVE DEBRIS REMOVAL: CURRENT STATUS OF ACTIVITIES IN CNES

Christophe BONNAL

CNES - Paris - Launcher Directorate

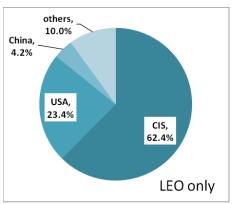
christophe.bonnal@cnes.fr

Content

Introduction

- 1. High Level Requirements
- 2. System Architectures Options
- 3. ADR High Level Functions
- 4. Support studies
- 5. Conclusions

Introduction


Kessler syndrome

- Identified theoretically by Don Kessler and Burt Cour-Palais in 1978 ¹
- Four sources of space debris:
 - Mission Related Objects, Break-up, Aging, Collisions
 - When the "collision" source becomes larger than the "atmospheric cleaning", natural increase of orbital population
 - Critical density varies strongly with the orbit altitudes:

♦ Most critical zones in LEO, between 700 and 1100 km, highly

inclined (including SSO)

- Potential need for Active Debris Removal (ADR)
- International problem
 - Sources of debris from every space-faring nations
 - No nation shall nor can solve the problem alone

¹ D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt, JGR 83 (A6) (1978) pp. 2637–2646.

■ Logic of the activities

- Consolidate the need, if any, to perform ADR in addition to the proper application of mitigation rules,
- Identify the corresponding system solutions,
- Identify the required technologies and clarify the corresponding development constraints,
- Identify some reference scenarios, with solutions precise enough to evaluate the programmatic consequences,
- Propose a scheme at international level to initiate such operations if, once again, they appear compulsory.

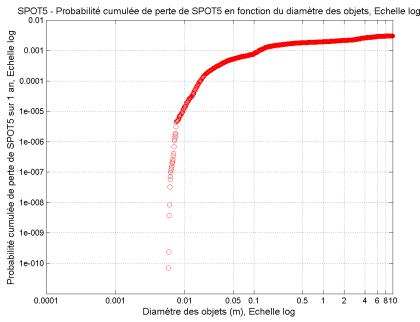
1. High Level Requirements

Number of debris to remove

- Studied at worldwide level since more than a decade
- Reference studies from NASA Orbital Debris Office ¹
 - Need to remove 5 large debris per year to stabilize the environment
 - Numerous robustness and sensitivity studies
- Cross-check led by 6 other IADC delegations
 - Same hypotheses, model and mitigation
 - 100% explosion suppression
 - 90% success of end of life measures
 - Different tools
 - IADC Action Item 27.1
 - Coherent results, and confirmation of the need to remove 5 large objects, at least, per year
 - **5 "new mitigation measures, such as Active Debris Removal, should be considered".**

■ Highest level priority for CNES:

- Development by Toulouse Space Center of a predictive tool, with different modeling, enabling robustness studies
- **♦ Tool MEDEE is now available and will be presented in Darmstadt**


¹ J.-C. Liou, N.L.Johnson, N.M.Hill, Controlling the growth of future LEO debris populations with active debris removal, Acta Astronautica 66 (2010) pp. 648 - 653

1. High Level Requirements

Size of Debris

- Removing large debris enables a long term stabilization of orbital environment
- Operators' main concern is short term risk induced by small debris
- Examples:
 - Risk on Spot 5 (CNES) ¹
 - Mission loss 0.3% per year
 - Main influence of < 5 cm
 - Risk on Sentinel 1 (TAS-I draft) ²
 - Mission loss 3.2% over lifetime
- Large integer objects may not be the only ones to remove:
 - Different concerns
 - Very different solutions

¹ P. Brudieu, B. Lazare, French Policy for Space Sustainability and Perspectives, 16th ISU Symposium, Feb. 21st, 2012

² R. Destefanis, L. Grassi, Space Debris Vulnerability Assessment of the Sentinel 1LEO S/C, PROTECT Workshop, Mar. 21st, 2012

ecnes space for Earth

1. High Level Requirements

Stabilization of environment

Current recommendations aim at stabilizing the orbital environment

♦ But do we really want a stabilization?

- Is the current risk considered acceptable by operators?
- Could it be increased? To which level?
- Should it be decreased?
- When should we act? Now? In 20 years time?

Acceptability of random reentry

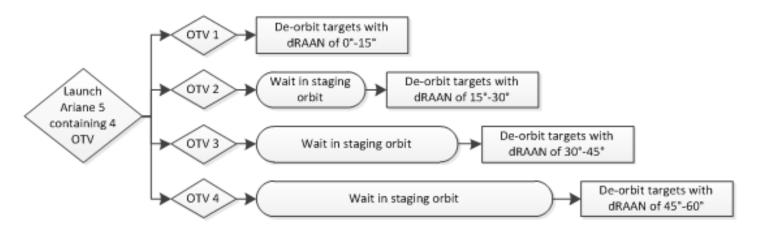
- Can ADR operations lead to random reentry of large dangerous objects?
 - ⇒ Casualty threshold = 10⁻⁴ per operation
 - ⇒ By definition, ADR shall be done on large objects ≡ Dangerous
 - Random reentry would be illegal according to French Law on Space Operations
 - However, it improves both debris situation and casualty risk
 - Action on-going at CNES Inspector General level
 - Action to be led within IADC WG4

Debris playground

- Definition of an "interesting target":
 - Function of size mass orbit density
 - Function of the debris population in one given zone in case of multiple debris chasing
 - Minimization of the mission ΔV
 - Minimization of global mission duration
 - Could be function of criticality of random reentry:
 - Random reentry not acceptable if casualty > 10⁻⁴
 - To be confirmed at national level, then at IADC level
 - Typical threshold in size: 500 to 1000 kg
 - Could be antagonist with finality of ADR
 - Only solution with Direct Controlled Reentry are studied today
 - Could be function of nature of debris
 - Launcher stages pose potentially less problems than Satellites (definition of a debris, confidentiality, mechanical robusteness...)
 - Not function of country
 - Deliberate choice to consider for the operational phase all debris
 - International problem, tackled at international level
- Identification of the most interesting zones:
 - Initial sorting identified 10 critical zones
 - Refined subdivision into coherent sub-regions²

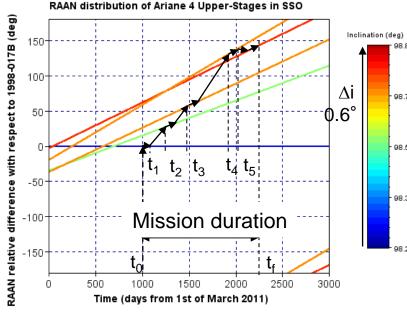
¹ JC. Liou, The top 10 Questions for Active Debris Removal, #S1.3, 1st European Workshop on ADR, Paris, June 2010

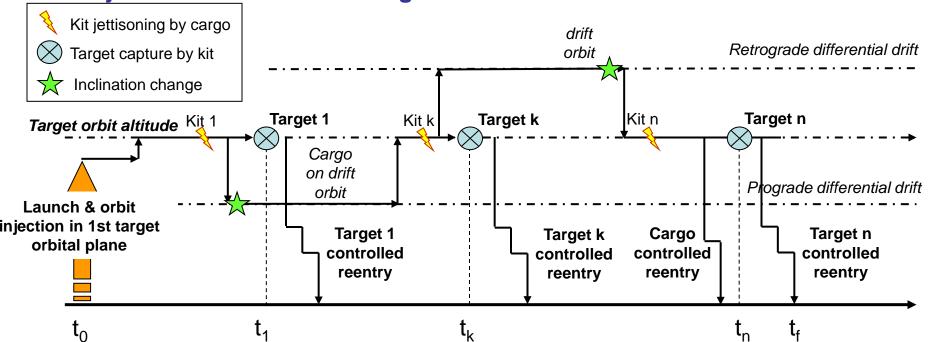
² P. Couzin, X. Rozer, L. Stripolli, Comparison of Active Debris Removal Mission Architecture, IAC-12-A6.5.5, Naples 2012


Strategy for successive debris removal

- Numerous possible schemes:
 - Single shot: one chaser, one debris
 - Multiple debris: one chaser, several debris
 - Multiple debris: one carrier + multiple deorbiting kits, one debris per kit
 - Multiple debris: multiple chasers in one launch, several debris each
- No obvious solution:
 - Cost of the launch → Dedicated or Piggy-back
 - Size of the launcher
 - Cost of the chaser "functions" → Effect of mission rate
 - Sizing of the multiple debris chasers → Global mission ΔV
- Analyses performed by Astrium, TAS-F and Bertin under CNES contract
 - Results are still differing!

Among the most promising solutions:

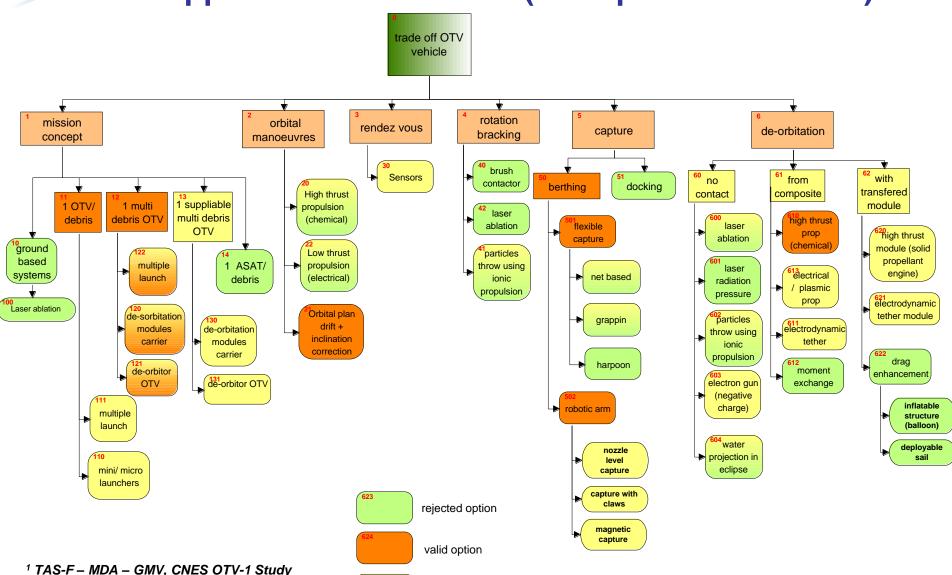

- Considered for the Operational phase
 - First Generation may show different optimum
- Large launcher with multiple chasers, each delivering multiple kits ¹
- Big launcher (e.g. Ariane 5) launching N different multi-debris OTV's
 - Group is divided into N RAAN regions
 - Each OTV targets a certain part of the group
 - Lower launch staging orbit generates a shorter wait.



¹ P. Couzin, X. Rozer, L. Stripolli, Comparison of Active Debris Removal Mission Architecture, IAC-12-A6.5.5, Naples 2012

■ From CNES Internal Study OTV ¹

- Removal of 5 Ariane upper stages
- Autonomous kit achieves capture
- Similar targets
- +/-200 km ∆a → +/-36° /yr drift capacity
- Targets visited in increasing order of inclination → cumulated 0.6° ∆i
- → Mission duration depends on launch date
- \rightarrow Adjust drift allotted ΔV to target distance



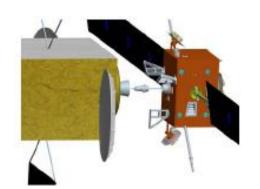
Active De-orbiting of a debris requires 5 functions:

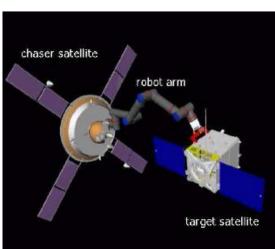
- F1: Far Range rendezvous between Chaser and Debris:
 - Up to 10 to 1 km from target
 - Can be done through absolute navigation
 - Already demonstrated and space qualified
- F2: Short Range rendezvous, up to contact
 - Never demonstrated (published) yet for objects which are:
 - Non cooperative
 - Non prepared
 - Potentially tumbling
 - Potentially physically and optically different from expected
- F3: Mechanical Interfacing between Chaser and Debris
 - Never demonstrated (published) yet for a non prepared object
- F4: Control, De-tumbling and Orientation of the debris
 - Partially demonstrated in orbit, but Human operations
- F5: De-orbitation

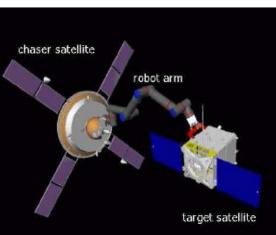
General approach and trade-off (example from TAS-F¹):

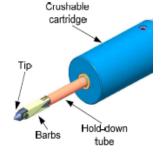
IAF Workshop on

bostion to be validated ienna – February 11th, 2013


- F2: Short Range rendezvous, up to contact
 - Numerous sensors can be considered
 - Optical, Mono or Binocular, Lidar / Radar...
 - Example from MDA-TASF¹
 - No single technology can cover the complete function


¹ TAS-F - MDA - GMV, CNES OTV-1 Study

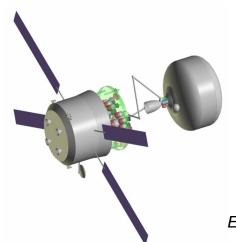

■ F3: Mechanical interfacing, some examples:



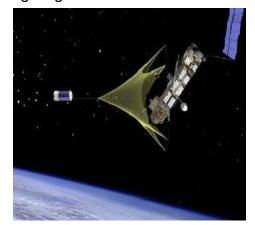
OSS: clamp inside the target nozzle



DLR: robotic arm DEOS



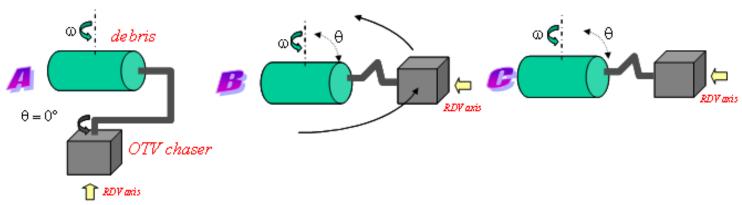
Astrium UK: harpoon


Uni. Roma: foam gluing

ESA-Astrium: hook ROGER

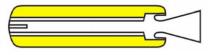
EPFL: claw

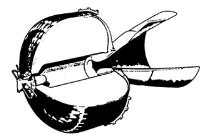
Astrium: net capture

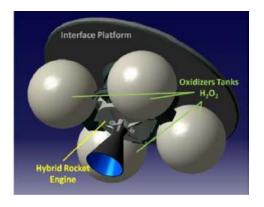

F3: Capture – Mechanical Interfacing

- No reference solution yet
- Solutions without mechanical interface are discarded here:
 - Electrical engine beam pressure
 - Electrostatic tractor
 - **♦** Lead to uncontrolled reentry
- Solutions may impose different modes of deorbiting
 - Net, hook... will impose "pulling" the debris
 - Some allow the control of the debris, other don't
- Among the preferred:
 - Net capture
 - Harpoon or hook
 - Robotic arms
 - ♦ Trade-off ongoing during the OTV-2 study (AST and TAS)

■ F4: Control-Detumbling of the debris:

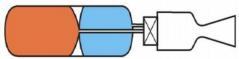

- Example from MDA ¹
- Rendezvous analyses demonstrate:
 - A dramatic dependency of the rendezvous sizing to the tumbling rate
 - The importance of the rendezvous axis
- Results suggest to assess different rendezvous scenarios, associated to different robotic solutions:
 - A RDV along the debris tumbling axis
 - B RDV along the robotic capture axis
 - C Approach perpendicular to the tumbling axis

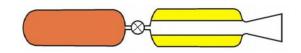


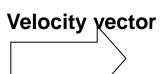


■ F5: Deorbitation:

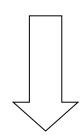
- High thrust deorbitation, Controlled reentry
- Rendezvous analyses demonstrate:
 - Conventional chemical propulsion
 - Solid, Hybrid, Monopropellant, Bi propellant
 - Each have drawbacks and advantages
 - Potentially most promising: Hybrid propulsion





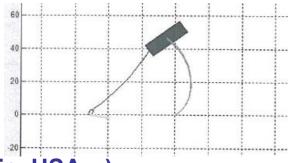


4. Support studies

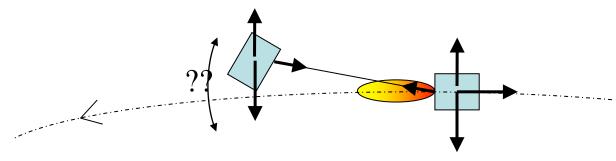

Envisat:

- One of the highest priorities debris
- Proposal to reorbit above 2000 km:
 - First generation
 - Would allow a full scale demonstration of most of the functions
 - Need to find the cheapest solution possible
 - Electrical propulsion
 - Derived from Smart 1 (x 4)
 - Compatible with a Vega launch
 - Long tether (500 to 1000 m)
 - Mechanical interfacing with hook on one of the "zenit" instruments
- Presented in Ref ¹

Earth center



¹ C. Bonnal, C. Koppel, 2nd European workshop on ADR, Paris, June 2012



4. Support studies

- Stability of the Chaser-Tether-Debris assembly:
 - Towing = Preferred solution today, but very low TRL
 - Control laws of the chaser during de-orbiting boost:
 - Parameters of tether: length, elasticity, damping
 - Initial conditions of Debris: 6 DOF = orientation = angular motion
 - Parameters of Chaser: MOI, thrust and variation, initial orientation
 - Parameters of tether-debris interface: unbalance
 - Acceptance criteria: ΔV amplitude, orientation, dispersions
 - Control laws
 - Three teams working on the topic in France
 - Mines Paris-Tech
 - Supelec
 - Thales Alenia Space

- Numerous other teams worldwide (ESA, Russia, USA...)
- Results not yet available
 - **♦ Dedicated session during upcoming EUCASS in July 2013**

First priority is to consolidate high level requirements:

- Question today is not yet How, but What and When
- Study of technical solutions:
 - Necessary for programmatic evaluations
 - Necessary for R&T programs for TRL increase
- Numerous questions have very high priority:
 - Legal and insurance framework, ownership, launching state
 - Political hurdles: Parallel with military activities
 - Financing schemes
 - International cooperation framework

Recommendation to work on a reference test case

- **♦ Cosmos 3M upper stage could be a good example**
- Benchmarking of solutions over same hypotheses
- Initial steps of international cooperation