

SCREEN # 1	
13:15-13:25	IAC-18.A1.IP.1 HI-SEAS (Hawaii Space Exploration Analog and Simulation): Overview Of Results From The Four-, Eight- And Twelve-Month Missions <i>Kim Binsted, University of Hawaii, United States</i>
13:25-13:35	IAC-18.A1.IP.4 The EDEN ISS Antarctic Greenhouse Project – 9 Month Mission Status after Deployment in Antarctica Daniel Schubert, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany
13:35-13:45	IAC-18.A1.IP.8 Automation of Biological Experiments in a Miniaturized Satellite Simon Beaudry, Ecole Polytechnique de Montreal, Canada
13:45-13:55	IAC-18.A1.IP.9 SELF-PAYBACK MANNED EXPEDITION TO MARS AND ITS MOONS PHOBOS AND DEIMOS 2022 Oleg Aleksandrov, Private individual www.oleg.space, United States
13:55-14:05	IAC-18.A1.IP.12 Constitutional Characteristics and Bone Mineral Content in Astronauts Before and After Flights Kirill Gordienko, Institute of Biomedical Problems, Russian Academy of Sciences, Russian Federation
14:05-14:15	IAC-18.A1.IP.14 Imitation tasks of spacecraft manual control and cosmonaut's psychophysiological parameters in the space experiment "Pilot-T" Daria Schastlivtseva, SSC RF Institute of Biomedical problems of RAS, Russian Federation
14:15-14:25	IAC-18.A1.IP.15 a novel wearable ecg-monitoring system for human space exploration Natalia Glazkova, Skolkovo Institute of Science and Technology, Russian Federation
14:25-14:35	IAC-18.A1.IP.17 Myotonpro: a fast-track cots payload to enhance the human physiology research on iss and beyond. Antonella Sgambati, OHB System AG-Bremen, Germany
14:35-14:45	IAC-18.A1.IP.18 Bone densitometry after long-time missions on ISS Galina Vassilieva, IBMP, Russian Federation

Interactive Presentation Session Final Schedule		
	SCREEN # 2	
13:15-13:25	IAC-18.A1.IP.20 terraforming mars into a future human habitat- a four - phase process Siddharth Ojha, University of Petroleum and Energy Studies, India	
13:25-13:35	IAC-18.A1.IP.22 Reduction of health risks during long term space missions by personalized quantification of vitamin D production Magdalena Wypukol, Charité Universitätsmedizin Berlin, Germany	
13:35-13:45	IAC-18.A1.IP.23 Application of a self-sufficient learn program to control objects with six degrees of freedom Bernd Johannes, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany	
13:45-13:55	IAC-18.A1.IP.25 Ultrasound utilization training for applications in microgravity Manuela Aguzzi, Space Applications Services N.V./S.A., Belgium	
13:55-14:05	IAC-18.A1.IP.26 Effect of microgravity on breast cancer cells Mohamed Zakaria Nassef, [unlisted], Germany	
14:05-14:15	IAC-18.A1.IP.27 An epigenetic mechanism for decreased MHC II expression in macrophages under simulated microgravity Chongzhen WANG, Guilin Medical University, China	
14:15-14:25	IAC-18.A1.IP.28 Proton and FE Ion-Induced Early and Late Chromosome Aberrations in Human Epithelial and Fibroblast Cells Rosalin Goss, National Aeronautics and Space Administration (NASA), Johnson Space Center, United States	
14:25-14:35	IAC-18.A1.IP.29 neural electrical dynamics during head down tilt and mental load Hasan Birol Cotuk, , Turkey	
14:35-14:45	IAC-18.A1.IP.34 Local sleep-like events in awake astronauts Gaetan Petit, ESA - European Space Agency, Switzerland	

SCREEN # 3	
	IAC-18.A2.IP.1
13:15-13:25	numerical study of detonation engines
	Elena Mikhalchenko, Scientific Research Institute for System Analysis, Russian Academy of
	Sciences (RAS), Russian Federation
	IAC-18.A2.IP.3
13:25-13:35	WEISS-SAT1:A Student Developed Microlab for Space Based Research
	Rhonda Lyons, NYRAD Inc, United States
	IAC-18.A2.IP.4
13:35-13:45	Numerical simulation of droplets capillary under microgravity with smoothed particle
15.55-15.45	hydrodynamics
	Fuzhen Chen, Northwestern Polytechnical University, China
	IAC-18.A2.IP.5
13:45-13:55	Study of bacteria and fungi growth on different materials used on the ISS with portable gas
13.43 13.33	sensor system E-Nose during the space flight
	Sergey Kharin, SSC RF-Institute of Biomedical Problems RAS, Russian Federation
	IAC-18.A2.IP.6
13:55-14:05	Important aspects of conducting aeroponic cultivation in microgravity
	Joanna Kuźma, Wroclaw University of Science and Technology, Poland
	IAC-18.A2.IP.7
14:05-14:15	On the Design of BECCAL - A Quantum Optics Experiment Aboard the ISS
	Marvin Warner, ZARM University of Bremen, Germany
	IAC-18.A2.IP.8
14:15-14:25	Microgravity experiments on thermal creep in Martian soil
	Tobias Steinpilz, University Duisburg-Essen, Germany
	IAC-18.A2.IP.9
14:25-14:35	The hardware development for the low-speed low-lewis-number counter flow flame experiment
	on ISS Kibo
	Tatsuya Taguchi, Japan Aerospace Exploration Agency (JAXA), Japan
14:35-14:45	IAC-18.A2.IP.10
	ARION 1 reusable sounding rocket: the new Microgravity Platform in Europe
	Francisco Garcia, PLD Space, Spain

SCREEN # 4	
	IAC-18.A3.IP.4
13:15-13:25	Shape development and analysis for 3d-printed high-resolution multiple electrode harmonised
	kingdon trap
	Anastasiia Fursova, Skolkovo Institute of Science and Technology, Russian Federation
	IAC-18.A3.IP.5
13:25-13:35	Separation before Extraction – A Low-Tech Approach to Increasing the Yield of Lunar ISRU
10.20 10.00	Extraction Processes
	Juergen Schleppi, Heriot-Watt University, United Kingdom
	IAC-18.A3.IP.7
13:35-13:45	Detection of the Redshifted 21-cm Radiation Line: A Mission Concept Study for the Establishment
	of a Lunar Radio Telescope Array in the Schrödinger Basin
	Zaid Rana, Concordia University, Canada
	IAC-18.A3.IP.8
13:45-13:55	Exploration of the lunar South Pole through autonomous navigation and mapping systems for
	maximising science return.
	Philippe Ludivig, ispace, Inc, Luxemburg
	IAC-18.A3.IP.9
13:55-14:05	System design of CubeSat Semi-hard Moon Impactor: OMOTENASHI
	Tatsuaki Hashimoto, Japan Aerospace Exploration Agency (JAXA), Japan
	IAC-18.A3.IP.13
14:05-14:15	The Moon Village, a Grand Project for the 21st Century
	Olivier Boisard, Consulting engineer OB-Conseil, and professor at Ecole Centrale de Lille, France
	IAC-18.A3.IP.16
14:15-14:25	MoonHopper: Conceptual design of an hopping robot for lunar exploration support
	Rodrigo Ventura, Institute for Systems and Robotics, Portugal
	IAC-18.A3.IP.21
14:25-14:35	Positioning Method of Chang'E-4 lander based on Multi-source Images
1 1120 1 1100	Xinyuan Lu, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical
	University,Xi'an, China
	IAC-18.A3.IP.23
14:35-14:45	Finding the North on a Lunar Microrover: a Lunar Surface Environment Simulator for the
	Development of Vision-Based Navigation Pipelines
	Fabian Dubois, ispace, Inc, Japan

	SCREEN # 5
	IAC-18.A3.IP.24
13:15-13:25	Validation campaign of Vision-Based Navigation algorithm for autonomous planetary landing
	Luca Losi, Politecnico di Milano, Italy IAC-18.A3.IP.26
13:25-13:35	Run, Camp, and Hike on the Moon
13.23 13.35	Antoine Faddoul, Tony Sky Designs Group, United States
	IAC-18.A3.IP.27
13:35-13:45	A south pole solar energy infrastructure to power up the lunar economy
	Adrian Stoica, NASA Jet Propulsion Laboratory, United States
	IAC-18.A3.IP.30
13:45-13:55	Overview of the First ispace Private Lunar Lander Mission
	Louis Burtz, ispace, Inc, Japan
	IAC-18.A3.IP.31
13:55-14:05	3D Printing of Moon Highlands Regolith Simulant
	Lorenzo Abbondanti Sitta, Politecnico di Milano, Italy
	IAC-18.A3.IP.33
14:05-14:15	adaptive in-situ resource utilisation (isru) for long term space exploration
	Satinder Shergill, Cranfield University, United Kingdom IAC-18.A3.IP.35
14:15-14:25	about orbit selection for lunar orbital station
14.13-14.23	Mariya Danilova, Central Research Institute of Machine Building (TSNIIMASH), Russian Federation
	IAC-18.A3.IP.37
14:25-14:35	Prototype of a Hopter - a hopping scout robot for planetary exploration
	Lukasz Wisniewski, Astronika, Poland
	IAC-18.A3.IP.41
14:35-14:45	The wind sensor of the HABIT (HAbitability: Brines, Irradiation and Temperature) instrument on
	board the ExoMars 2020 mission
	Álvaro Tomás Soria Salinas, Luleå University of Technology, Sweden

Interna construction	eractive Presentation Session Final Schedule
	SCREEN # 6
13:15-13:25	IAC-18.A3.IP.43 The high efficient communication method of multiple spacecrafts based on Proximity-1 protocol for MARS exploration Wei Wang, Beijing Institute of Technology, China
13:25-13:35	IAC-18.A3.IP.44 Design of a Reusable Crane System for Mars Surface Missions Anne-Marlene Rüede, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
13:35-13:45	IAC-18.A3.IP.48 Space Mining Corporation: The Pseudo-Economic and Technology Model Aurthur Vimalachandran Thomas Jayachandran, Samara University, Russian Federation
13:45-13:55	IAC-18.A3.IP.51 MARSIS radar data interpretation to characterize the deeper layers in the North Polar cap on Mars. Melissa Mirino, Open University, United Kingdom
13:55-14:05	IAC-18.A3.IP.53 Engineering Model of Polarimetric Camera for Korean Lunar Orbiter Kyungin Kang, Korea Advanced Institute of Science and Technology (KAIST), Korea, Republic of
14:05-14:15	IAC-18.A3.IP.57 Perturbation effects over a Mercury orbiter Josué Cardoso dos Santos, São Paulo State University (FEG-UNESP), Brazil
14:15-14:25	IAC-18.A3.IP.59 analysis, test and simulation of landing system touchdown dynamics Silvio Schröder, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany
14:25-14:35	IAC-18.A3.IP.62 Cislunar1000: Vision for 2018-2035 Melissa Sampson, Ball Aerospace, United States
14:35-14:45	IAC-18.A3.IP.65 cubesat minimoon rendezvous mission synthesis and analysis Niklas Anthony, Luleå University of Technology, Sweden

SCREEN # 7	
13:15-13:25	IAC-18.A1.IP.35
	Impact of the space flights in nutritional adaptations at back to earth. Review. LUISA GARCIA ROJAS VAZQUEZ, [unlisted], Mexico
	IAC-18.A1.IP.37
42.25.42.25	Construction of basic human habitats on planetary/lunar places without direct human
13:25-13:35	involvement
	ADITYA VEDANTHU, R.V.College of Engineering, India
10.05.40.45	IAC-18.A1.IP.39
13:35-13:45	development and testing of the cóndor space suit simulator Oscar Ivan Ojeda Ramirez, Universidad Nacional de Colombia, Colombia
	IAC-18.A1.IP.40
	Space Food and Nutrition in a Long Term Manned Mission
13:45-13:55	Funmilola Adebisi Oluwafemi, National Space Research and Development Agency (NASRDA),
	Abuja, Nigeria
	IAC-18.A2.IP.11
13:55-14:05	Burning of a single fuel droplet containing metallic particles in weightlessness
	Nickolay N. Smirnov, Moscow Lomonosov State University, Russian Federation IAC-18.A2.IP.12
	Realistic 3D simulations of Bragg beam splitters for matter wave interferometry under
14:05-14:15	microgravity
	Antje Neumann, TU Darmstadt, Germany
	IAC-18.A2.IP.13
14:15-14:25	Numerical simulation of wicking in porous media
	Dawid Zimnik, ZARM, University of Bremen, Germany IAC-18.A2.IP.14
14:25-14:35	Phase separation in capillary channel flow using porous media
1.120 1.100	Kamal Singh Bisht, ZARM, University of Bremen, Germany
	IAC-18.A2.IP.15
14:35-14:45	PAPELL: Interaction Study of Ferrofluid with Electromagnets of an Experiment on the
	International Space Station
	Adrian Causevic, KSat e.V., Germany

Interactive Presentation Session Final Schedule	
	SCREEN # 8
13:15-13:25	IAC-18.A4.IP.3 Neuroscience in SETI : a contemporary case study from the arts and humanities. Daniela de Paulis, , The Netherlands
13:25-13:35	IAC-18.A4.IP.4 SETI Search with Gas Core Nuclear Propelled Space Probes Ugur Guven, UN CSSTEAP, United States
13:35-13:45	IAC-18.A4.IP.6 THE SEARCH FOR EXTRA-TERRESTRIAL INTELLIGENCE AT TRAPPIST-1 E: POSSIBILITIES FOR LIFE Devarrishi Dixit, University of Petroleum and Energy Studies, India
13:45-13:55	IAC-18.A4.IP.7 Merits and demerits of performing experiments and exoplanet imaging outside the disk of our solar system and possible exit paths in the direction other than the plane or our solar system to exit the planetary plane Aditya Mishra, University of Petroleum and Energy Studies, India
13:55-14:05	IAC-18.A3.IP.67 utilization of resources on titan and transitory base-camp for manned outer solar system exploration Kaustav Dutta Choudhury, University of Petroleum and Energy Studies, India
14:05-14:15	IAC-18.A3.IP.68 Evaluation of the integrated helmet of the Autonomous Module of Sustainable Cooling – MARS Julio Rezende, Brazilian Space Agency (AEB), Brazil
14:15-14:25	IAC-18.A3.IP.69 VIRTUAL REALITY FOR MULTI-USER EXPERIENCE IN SPACE MISSIONS Antonio Del Mastro, Mars Planet, Italy
14:25-14:35	IAC-18.A3.IP.70 Measurement of the parameters of the gravitational field of deep space. Sergei Matvienko, Yuzhnoye SDO European Representation, Ukraine
14:35-14:45	IAC-18.A3.IP.54 GNC AND FDIR DATA FUSION TECHNIQUES FOR THE ASTEROID IMPACT MISSION Claudiu-Lucian Prioroc, G.M.V. Space and Defence, S.A., Romania

Interactive Presentation Session Final Schedule	
	SCREEN # 9
13:15-13:25	IAC-18.A5.IP.2 Rendezvous in Lunar Near Rectilinear Halo orbits Lorenzo Bucci, Politecnico di Milano, Italy
13:25-13:35	SLOT AVAILABLE – CONTACT ZARM IP TEAM TO UPLOAD YOUR PRESENTATION
13:35-13:45	IAC-18.A5.IP.6 Conceptual design of a permanent Lunar surface base Marius Schwinning, Institute of Space Systems, University of Stuttgart, Germany
13:45-13:55	IAC-18.A5.IP.8 Trajectory Design for Phobos & Study Proposition of Geodetic Framework for an Automated Mechanical Transitory Base-camp on Phobos Rohan Chandra, University of Petroleum and Energy Studies, India
13:55-14:05	IAC-18.A2.IP.16 Tianzhou's reusable cargo spaceship, a useful and powerful platform for microgravity science Ming Li, China Academy of Space Technology (CAST), China
14:05-14:15	IAC-18.A6.IP.12 Collision risk prediction for constellation operators Romain Lucken, , France
14:15-14:25	IAC-18.A6.IP.14 The development of an orbital risk assessment capability Toby Harris, UK Space Agency, United Kingdom
14:25-14:35	IAC-18.A6.IP.18 Hypervelocity impact numerical simulations using material point method coupled with EOS calculated from molecular dynamics method Yixiao Li, CASIC, China
14:35-14:45	IAC-18.A6.IP.19 Space debris risk assessment of spacecraft protected by 3D printed panels Hedley Stokes, PHS Space Ltd, United Kingdom

SCREEN # 10	
	IAC-18.A6.IP.1
13:15-13:25	CastelGAUSS Project: Observations of NEOs and GSO objects at the ISON-Castelgrande
	Observatory
	Filippo Graziani, G.A.U.S.S. Srl, Italy
	IAC-18.A6.IP.4
13:25-13:35	Scheduling solution for space debris observations
	Federico Curianò, Sapienza University of Rome, Italy
	IAC-18.A6.IP.5
13:35-13:45	Secondary resonances due to solar radiation pressure in the vicinity of GLONASS and GPS regions
	Eduard Kuznetsov, Ural Federal University, Russian Federation
	IAC-18.A6.IP.6
13:45-13:55	Slovakian Optical Sensor for HAMR Objects Cataloguing and Research
15.45-15.55	Jiri Silha, Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava,
	Slovakia, Slovak Republic
	IAC-18.A6.IP.7
13:55-14:05	SLR observation of Tiangong-1
	Hou-Yuan Lin, Purple Mountain Observatory, Chinese Academy of Sciences, China
	IAC-18.A6.IP.8
14:05-14:15	Improved Space Object Observation Techniques in ISON project
	Igor Molotov, Keldysh Institute of Applied Mathematics, RAS, Russian Federation
	IAC-18.A6.IP.9
14:15-14:25	Tacking the association and tracking problems using directional
14.15 14.25	statistics to model uncertainty
	Shambo Bhattacharjee, University of Leeds, United Kingdom
	IAC-18.A6.IP.10
14:25-14:35	the multibeam radar sensor birales: performance assessment for space surveillance and tracking
	Matteo Losacco, Politecnico di Milano, Italy
	IAC-18.A6.IP.11
14:35-14:45	The S5S online platform for image analysis and orbit determination
	Marco Acernese, Sapienza University of Rome, Italy

SCREEN # 11	
	IAC-18.A6.IP.20
13:15-13:25	Study on performance of shielding configuration stuffed with Al-mesh and basalt fabric
	Fa-wei Ke, China Aerodynamics Research and Development Center (CARDC) , China
	IAC-18.A6.IP.20
13:25-13:35	Study on the Shielding performance of configuration stuffed with aramid and basalt fabric
13.23 13.33	composite layer
	Fa-wei Ke, China Aerodynamics Research and Development Center (CARDC) , China
	IAC-18.A6.IP.21
13:35-13:45	Associating short-arc range and angle measurements of objects in LEO.
	Alessandro Vananti, Astronomical Institute University of Bern (AIUB), Switzerland
	IAC-18.A6.IP.22
13:45-13:55	Lightcurve inversion for Attitude determination
	Fabio Santoni, Sapienza University of Rome, Italy
	IAC-18.A6.IP.23
	Mission Planning and Simulation System Study on Active Debris Removal with Space-based Laser
13:55-14:05	System
	Zizheng Gong, Beijing Institute of Spacecraft Environment Engineering, China Academy of Space
	Technology (CAST), China
	IAC-18.A6.IP.25
14:05-14:15	Quantum enhanced ladar by squeezed light for space target detection
	Jingting Ma, CASIC, China
	IAC-18.A6.IP.27
14:15-14:25	autonomous space debris capturing using deep reinforcement learning method
	Zhong Ma, Xi'an Microelectronics Technology Institute, China
14:25-14:35	IAC-18.A6.IP.28
	De-orbiting large space debris objects from the Sun-synchronous orbit by aerodynamic braking
	Vladislav Sidorenko, Keldysh Institute of Applied Mathematics, RAS, Russian Federation
	IAC-18.A6.IP.29
14:35-14:45	exploration of the future application mode of laser propulsion for the space debris removal
	Jia Zhang, CALT,CASC, China

SCREEN # 12	
	IAC-18.A6.IP.30
13:15-13:25	Preliminary Study on Deorbit of Large Debris using a Charged Sail in Low Earth Orbit
	Takuma Nagata, Chukyo University, Japan
	IAC-18.A6.IP.31
13:25-13:35	Prospects of Touchless Space Debris Detumbling Using an Electrostatic Pusher Configuration
	Vladimir S. Aslanov, Samara National Research University, Russian Federation
	IAC-18.A6.IP.34
13:35-13:45	Acquiring Observations for Test and Validation in the Space Surveillance and Tracking Segment of
13.33-13.43	ESA's SSA Programme
	Beatriz Jilete, ESA, Spain
	IAC-18.A6.IP.35
13:45-13:55	GeoTracker - a worldwide optical network for Space Situational Awareness
	Vourc'h Sébastien, ArianeGroup SAS, France
	IAC-18.A6.IP.36
13:55-14:05	Sapienza Space Systems and Space Surveillance Network (S5N): a high coverage infrastructure for
13.33 14.03	space debris monitoring.
	Federico Curianò, Sapienza University of Rome, Italy
	IAC-18.A6.IP.37
14:05-14:15	TRACKING ENVISAT: THE STRUCTURAL DEVELOPMENT OF E.INSPECTOR
	Marlini Simoes, University of Cambridge, United Kingdom
	IAC-18.A6.IP.39
14:15-14:25	investigation of aerodynamics heating of space debris object descending in earth atmosphere
	Andrii Dreus, O. Honchar Dnipropetrovsk National University, Ukraine
14:25-14:35	IAC-18.A6.IP.40
	Optical degradation and recovery of multilayer insulation in a simulated GEO environment
	Daniel Engelhart, [unlisted], United States
	IAC-18.A6.IP.41
14:35-14:45	poliMi optical sensor for space surveillance and tracking
	Daniele Antonio Santeramo, Politecnico di Milano, Italy

Interactive Presentation Session Final Schedule	
	SCREEN # 13
13:15-13:25	IAC-18.A7.IP.1 Dual Frequency Synthetic Aperture Radar Satellite Monish Mathur, University of Petroleum and Energy Studies, India
13:25-13:35	IAC-18.A7.IP.3 Research progress of on-orbit servicing technology on space astronomy Zhang Jiuxing, , China
13:35-13:45	IAC-18.A7.IP.4 FDIR Strategies on Missions with Highly Sensitive Optical Payloads Bastian Burmann, OHB System AG-Bremen, Germany
13:45-13:55	IAC-18.A6.IP.42 two-finger caging-based grasping region determination of polygonal space debris with motion parameters uncertainty Ma Chuan, College of Astronautics, Northwestern Polytechnical University (NPU), China
13:55-14:05	IAC-18.A6.IP.44 The UAE Space Debris Mitigation Instrument Fatheya Al Shareji, UAE Space Agency, United Arab Emirates
14:05-14:15	IAC-18.A6.IP.45 service operations of spacecrafts as a solution for space debris problem Vera Mayorova, Bauman Moscow State Technical University, Russian Federation
14:15-14:25	IAC-18.A6.IP.46 An Improved Synchronized Orbit Determination Method Based on Distributed Star Sensors FEI FENG, Academy of Equipment, China
14:25-14:35	IAC-18.B1.IP.35 NEXT GENERATION RADAR SERVICES: ACTIONABLE INFORMATION FOR DECISION MAKING Pierre-Alexis Joumel, Airbus Defence and Space, Germany
14:35-14:45	IAC-18.B2.IP.17 an antenna array-based radio navigation signal's differential carrier tracking algorithm Shunxiao Wu, Tianjin communications and Broadcasting Group Co., Ltd, China

SCREEN # 14	
	IAC-18.B1.IP.1
13:15-13:25	reviews and prospect of international electromagnetic seismic satellite
	ZHANG Xiaopeng, China Academy of Space Technology (CAST), China
	IAC-18.B1.IP.3
13:25-13:35	EarthCARE processing facility and EarthCARE L2 testbed - A synergetic setup to support scientific
13.25-13.35	algorithm development
	Bernard Pruin, Werum Software & Systems AG, Germany
	IAC-18.B1.IP.5
13:35-13:45	The Challenge of Integrating and Aligning a New Type of EO Instrument: the EnMAP
15.55 15.45	Hyperspectral Imager
	Aurelien GODENIR, OHB System AG - Oberpfaffenhofen, Germany
	IAC-18.B1.IP.7
13:45-13:55	Assessment of Wind Shadows behind Offshore Wind Parks with Antenna Beam Pattern
10.10 10.00	Compensated Sentinel-1 Data
	Sven Jacobsen, DLR (German Aerospace Center), Germany
	IAC-18.B1.IP.9
13:55-14:05	METEOSAT THIRD GENERATION – Development of the Common Satellite Platform
	Andrea Jaime, OHB System AG - Munich, Germany
	IAC-18.B1.IP.10
14:05-14:15	Assessing the maturity of EO activities at national level
	Eleftherios Mamais, National Observatory Of Athens, Greece
	IAC-18.B1.IP.13
14:15-14:25	Copernicus Climate Change Service (C3S) global satellite observations of atmospheric carbon
	dioxide and methane
	Michael Buchwitz, University of Bremen, Germany
	IAC-18.B1.IP.14
14:25-14:35	Satellite Remote Sensing in ASEAN : A Critical Review of National Data Policies
	Quentin Verspieren, University of Tokyo, Japan
	IAC-18.B1.IP.19
14:35-14:45	Machine learning approaches to classify maritime objects from space radar
	Domenico Velotto, German Aerospace Center (DLR), Bremen, Germany, Germany

	SCREEN # 15
13:15-13:25	IAC-18.B1.IP.21 earth inspector: reconciling space technologies and agricultural approaches to tackle climate change
13:25-13:35	Sathesh Raj, World Space Week Association, Malaysia IAC-18.B1.IP.22 Autonomous satellite data monitoring techniques applied to Delfi-C3 telemetry Alessandro Saetta, Politecnico di Milano, Italy
13:35-13:45	IAC-18.B1.IP.23 Spatial-temporal Epidemiology Study of the Chikungunya Disease in Bolivia Natalia Indira Vargas-Cuentas, Beihang University (BUAA), China
13:45-13:55	IAC-18.B1.IP.26 Change detection of the Sundarban part of Bangladesh using remote sensing and GIS techniques with machine learning algorithms Mitesh Chakma, BRAC University, Bangladesh
13:55-14:05	IAC-18.B1.IP.28 targets for satellite-based emerging disease surveillance: ecological change and zoonotic bat viruses Samuel Malloy, The Ohio State University, United States
14:05-14:15	IAC-18.B1.IP.29 Three-super platform for high-efficiency, high-value earth observation mission Ming Li, China Academy of Space Technology (CAST), China
14:15-14:25	<i>IAC-18.B1.IP.31</i> Coupled Orbital and Radiometric Performance Simulation of the Formation Flight Interferometric Radiometer for Geostationary Atmospheric Sounding Ahmed Kiyoshi Sugihara El Maghraby, University of Southampton, United Kingdom
14:25-14:35	IAC-18.B1.IP.33 OHB Future Earth Observation Spaceborne Missions: Overview and current status Sebastien Tailhades, OHB System, Germany
14:35-14:45	IAC-18.B1.IP.34 Maximizing Data Throughput in Earth Observation Satellite to Ground Transmission by Employing a Flexible High Data Rate Transmitter Operating in X-Band and Ka-Band Philipp Wertz, Tesat-Spacecom GmbH & Co. KG, Germany

	SCREEN # 16
13:15-13:25	IAC-18.B1.IP.21 earth inspector: reconciling space technologies and agricultural approaches to tackle climate change
	Sathesh Raj, World Space Week Association, Malaysia
	IAC-18.B1.IP.22
13:25-13:35	Autonomous satellite data monitoring techniques applied to Delfi-C3 telemetry Alessandro Saetta, Politecnico di Milano, Italy
	IAC-18.B1.IP.23
13:35-13:45	Spatial-temporal Epidemiology Study of the Chikungunya Disease in Bolivia Natalia Indira Vargas-Cuentas, Beihang University (BUAA), China
13:45-13:55	IAC-18.B1.IP.26 Change detection of the Sundarban part of Bangladesh using remote sensing and GIS techniques with machine learning algorithms <i>Mitesh Chakma, BRAC University, Bangladesh</i>
13:55-14:05	IAC-18.B1.IP.28 targets for satellite-based emerging disease surveillance: ecological change and zoonotic bat viruses Samuel Malloy, The Ohio State University, United States
	IAC-18.B1.IP.29
14:05-14:15	Three-super platform for high-efficiency, high-value earth observation mission Ming Li, China Academy of Space Technology (CAST), China
14:15-14:25	IAC-18.B1.IP.31 Coupled Orbital and Radiometric Performance Simulation of the Formation Flight Interferometric Radiometer for Geostationary Atmospheric Sounding Ahmed Kiyoshi Sugihara El Maghraby, University of Southampton, United Kingdom
14:25-14:35	IAC-18.B1.IP.33 OHB Future Earth Observation Spaceborne Missions: Overview and current status Sebastien Tailhades, OHB System, Germany
14:35-14:45	IAC-18.B1.IP.34 Maximizing Data Throughput in Earth Observation Satellite to Ground Transmission by Employing a Flexible High Data Rate Transmitter Operating in X-Band and Ka-Band Philipp Wertz, Tesat-Spacecom GmbH & Co. KG, Germany

	SCREEN # 17
	IAC-18.B3.IP.2
13:15-13:25	Multisensory garments for optimal body-mind awareness in space travel
	Kristin Neidlinger, SENSOREE Therapeutic Biomedia, United States
	IAC-18.B3.IP.3
13:25-13:35	Bake In Space: To boldly bake where nobody has baked before
	Ryan Laird, Bake in Space, United Kingdom
	IAC-18.B3.IP.5
13:35-13:45	HabitatOS - Open Source Operating System for Extraterrestrial Habitats
	Matt Harasymczuk, ESA / Polish Air Force Academy, Poland
	IAC-18.B3.IP.6
13:45-13:55	CIMON: A visual navigation system for flying through the International Space Station
	Ralf Regele, Airbus DS GmbH, Germany
	IAC-18.B3.IP.9
13:55-14:05	The RVS3000 and RVS3000-3D LIDAR Sensors for Rendezvous and Docking Missions
	Sebastian Dochow, Jena-Optronik GmbH, Germany
	IAC-18.B3.IP.11
14:05-14:15	Brain Computer Interface - an emerging technology towards future spaceflight missions
	Sonal Baberwal, International Space University (ISU), France
	IAC-18.B3.IP.13
14:15-14:25	A redefined astronaut selection process for low cost commercial space flight missions
	Carolina Gomez Rodriguez, University of Bremen, Germany
	IAC-18.B3.IP.14
14:25-14:35	Proposal for a Floating Habitat Design for Manned Missions to Venus
	James Lai, McMaster University, Canada

SCREEN # 18	
	IAC-18.B6.IP.1
13:15-13:25	Breakthroughs in the Automated Testing using Man-Machine Interface of Ground Segment
	Software
	Mário Pinto, Etamax Space GmbH, Germany
	IAC-18.B6.IP.2
13:25-13:35	SpaceCentre-2018: An Advanced PWA-based Ground Station Application from FlatSat Testing to
	Mission Operation
	DAN FENG, National University of Singapore, Singapore, Republic of
	IAC-18.B6.IP.5
13:35-13:45	Optimizing Launch Preparations of a Suborbital Rocket
	Hamed Gamal, SpaceForest Ltd., Poland
	IAC-18.B6.IP.3
13:45-13:55	Human predictive simulation for Earth and Space exploration
	Tatiana Volkova, Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Space Center (SSC),
	Switzerland
12.55 14.05	IAC-18.B6.IP.4
13:55-14:05	Secure Model-Based Systems Engineering for CubeSats
	Umesh Anilchandra Bhat, Estonian Student Satellite Foundation (ESTCube), Estonia IAC-18.C1.IP.36
	The mission's design of a solar sail spacecraft to the nearest circumsolar space, based on a locally-
14:05-14:15	optimal control laws
14.05-14.15	Olga Starinova, Samara National Research University, Russian Federation
	IAC-18.C1.IP.37
14:15-14:25	How to Send a Signal to Fixed Ground Antennas from a Non-Geostationary Satellite
14.15-14.25	Dominik Quantius, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany
	IAC-18.C1.IP.38
	Proba-3 Mission: In orbit demonstration of a high performance relative position and attitude
14:25-14:35	control
	Daniel Serrano, SENER Ingenieria y Sistemas, S.A., Spain
	IAC-18.C1.IP.39
	Coordinated Capture of a Passive Space Object Using Augmented State Estimation and Neural
14:35-14:45	Networks
	Emily Gleeson, Ryerson University, Canada

	SCREEN # 19
13:15-13:25	IAC-18.C1.IP.1 Wave-based motion control of flexible space systems Prof.William O'Connor, University College Dublin (UCD), Ireland
13:25-13:35	IAC-18.C1.IP.3 Multispectral Image Processing for Navigation Using Low Performance Computing Duarte Rondao, Cranfield University, United Kingdom
13:35-13:45	IAC-18.C1.IP.5 Vision based state estimation using a graph-SLAM approach for proximity operations near an asteroid Arunkumar Rathinam, University of New South Wales, Australia
13:45-13:55	IAC-18.C1.IP.8 Evaluation of a camera-based pose and shape reconstruction technique for an unknown tumbling target Renato Volpe, Sapienza University of Rome, Italy
13:55-14:05	IAC-18.C1.IP.9 highly accurate guidance algorism for landing on a planet with gravity Toyonori Kobayakawa, Mitsubishi Heavy Industries, Ltd., Japan
14:05-14:15	IAC-18.C1.IP.10 The Aldrin Cycler Improved by the Lorentz Force Florence Duveiller, Georgia Institute of Technology, Atlanta, United States
14:15-14:25	IAC-18.C1.IP.11 GRACE accelerometer calibration by high precision non-gravitational force modelling and its validation Florian Wöske, Center of Applied Space Technology and Microgravity, Germany
14:25-14:35	IAC-18.C1.IP.13 Control of 6DOF Spacecraft Hovering about Asteroids without Velocity Measurements Haichao Gui, Beihang University, China
14:35-14:45	IAC-18.C1.IP.14 Relative State Measurement of A Non-Cooperative Spacecraft for Final Approaching Stage of On- Orbit Servicing Using Contour Features Yunhua Wu, Nanjing University of Aeronautics and Astronautics, China

SCREEN # 20	
	IAC-18.C1.IP.15
13:15-13:25	Chaotic motions of tethered tug-debris system with fuel residuals
	Vladimir S. Aslanov, Samara National Research University, Russian Federation
13:25-13:35	IAC-18.C1.IP.17
	Distributed Coordination Control for Multiple Spacecraft with Coupled Attitude and Orbit
	Dynamics under the Directed Graph
	Ma Weihua, National Key Laboratory of Aerospace Flight Dynamic, Northwestern Polytechnical
	University, China
	IAC-18.C1.IP.18
13:35-13:45	dual quaternion based relative navigation for spacecraft proximity operation
	Yunju Na, Korea Advanced Institute of Science and Technology (KAIST), Korea, Republic of
	IAC-18.C1.IP.19
13:45-13:55	Inverse-dynamics Particle Swarm Optimization for Real Time Optimal Control: Challenges and
13.45-13.55	Opportunities
	Dario Spiller, Sapienza University of Rome, Italy
	IAC-18.C1.IP.20
13:55-14:05	Space-oriented navigation solutions with integrated sensor-suite: the I3DS H2020 project
	Antonio Fulvio Scannapieco, Cranfield University, United Kingdom
	IAC-18.C1.IP.21
14:05-14:15	Investigation into the Controllability of Underactuated Magnetically Stabilized Spacecraft
	Mike Alger, Ryerson University, Canada
	IAC-18.C1.IP.22
14:15-14:25	End-of-life disposal design for spacecraft at Libration Points Orbits and an interpretation of their
14.15 14.25	probability of Earth return
	Greta De Marco, Politecnico di Milano, Italy
	IAC-18.C1.IP.23
14:25-14:35	HIGHER-ORDER CAYLEY TRANSFORM FOR RELATIVE POSE PARAMETERIZATION OF SPACECRAFT
	Daniel Condurache, Technical University of Iasi, Romania
	IAC-18.C1.IP.25
14:35-14:45	sentinel-3 tandem: from concept to implementation
	Berthyl Duesmann, ESA - European Space Agency, The Netherlands

SCREEN # 21	
13:15-13:25	IAC-18.C1.IP.26 The Borea project: a quadrotor UAV cradle-to-grave design for space GNC prototyping and testing
13.13 13.23	Luigi Colangelo, Politecnico di Torino, Italy
13:25-13:35	IAC-18.C1.IP.28
	Orbital and Formation Optimization for Space Gravitational Waves Observatory Mission
	Mingtao Li, 1: National Space Science Center, Chinese Academy of Sciences; 2:University of
	Chinese Academy of Sciences, China
	IAC-18.C1.IP.29
13:35-13:45	Next steps for the CryoSat-2 mission: Improving sea-ice estimates in joint operations with the ICESat-2 spacecraft.
	Javier Sanchez, ESA - European Space Agency, Germany
	IAC-18.C1.IP.30
13:45-13:55	Missions for Asteroid Insertion into Earth-Mars Cycler
	Francesco Simeoni, , Italy
	IAC-18.C1.IP.31
13:55-14:05	Mission Design and Analysis for Mars and Phobos Missions via Lunar and Mars-Phobos Distant
	Retrograde Orbits
	Davide Conte, The Pennsylvania State University, United States
14.05 14.15	IAC-18.C1.IP.32
14:05-14:15	Fuel-optimal trajectories near Lagrange points
	Florent Bréhard, LAAS-CNRS, France IAC-18.C1.IP.33
14:15-14:25	Advanced In-Flight Results from the GPS Receiver on SmallGEO
14.15-14.25	Nils Neumann, OHB System AG-Bremen, Germany
	IAC-18.C1.IP.34
	advanced approach based on convex programming for mars powered
14:25-14:35	descent guidance
	Kazuya Echigo, Department of Engineering ,The University of Tokyo , Japan
	IAC-18.C1.IP.35
14.25 14.45	Extended reactionless workspace manipulator through reaction wheels
14:35-14:45	Alessandro Tringali, Space Mechatronic Systems Technology Laboratory, University of Strathclyde,
	United Kingdom

SCREEN # 22	
	IAC-18.C2.IP.1
13:15-13:25	Experimental Studies on Aerothermal Fluid-Structure Interaction with Plastic Deformation
	Dennis Daub, DLR (German Aerospace Center), Germany
13:25-13:35	IAC-18.C2.IP.2
	Space systems structural analyses from modal parameters using a Python developed toolset, and
	additional pre/post-processing features
	José Luis Gasent-Blesa, University of Valencia, Spain
	IAC-18.C2.IP.3
12.25 12.45	Graphene Functionalization using Transition Metal Oxide for Enhancing the Bifunctional Catalytic
13:35-13:45	Ability of Nanoparticles
	Simranjit Grewal, The National AeroSpace Training And Research Center (THE NASTAR CENTER), United States
	IAC-18.C2.IP.5
13:45-13:55	Free vibrations of ultrathin deployable booms fabricated with nano-modified epoxy matrix
10.10 10.00	Susanna Laurenzi, Sapienza University of Rome, Italy
	IAC-18.C2.IP.6
	Challenges in the design of ultralight mechanisms for deep space exploration - based on RPWI
13:55-14:05	instruments for ESA JUICE mission
	Ewelina Ryszawa, Astronika, Poland
	IAC-18.C2.IP.7
14:05-14:15	DEFIANT: A small mass-producible microsatellite platform for demanding applications under
14.05-14.15	extreme cost and size constraints
	Benoit Larouche, Space Flight Laboratory, University of Toronto, Canada
	IAC-18.C2.IP.12
14:15-14:25	Carbon fiber reinforced benzoxazine featuring shape memory behavior for temperature-
	dependent self-deploying spacecraft structures
	Hannes Schäfer, University of Bremen, Germany
14.25 14.25	IAC-18.C2.IP.13
14:25-14:35	Bio-mimicry: A possible natural solution to design sustainable habitat on Mars
	Avishek Ghosh, Loughborough University, United Kingdom IAC-18.C2.IP.16
14:35-14:45	
14:35-14:45	Developmental Verification of the Launch of Cubesat Format Satellites from Small Spacecrafts Victor Leonov, Bauman Moscow State Technical University, Russian Federation
	victor Leonov, Baaman Woscow State rechnical Oniversity, Russian Federation

SCREEN # 23	
13:15-13:25	IAC-18.C2.IP.18 Combining Additive Manufacturing and Biomimetics for the Optimization of Satellite Structures
	Daniel Vogel, Technische Universität München, Germany
13:25-13:35	IAC-18.C2.IP.19
	Corrosion chemical kinetics and erosion effects due to Atomic Oxygen exposure of solar arrays for nano-satellites applications.
	Andrea Delfini, Sapienza University of Rome, Italy
	IAC-18.C2.IP.20
13:35-13:45	fabrication and characteristic of black body system with nano-structured needle for on-board
15.55-15.45	calibration of image sensor
	Seolhui Hwang, Hanbat National University, Korea, Republic of
	IAC-18.C2.IP.21
13:45-13:55	Moisture induced combustion and fire safety
	Anirudh Nautiyal, SRM University, kattankulathur, chennai, INDIA, India
	IAC-18.C2.IP.25
13:55-14:05	Design Structure, Dynamic Structure Simulation and Thermal Simulation of Surya Satellite-1
	Hery Steven Mindarno, , Indonesia
	IAC-18.C2.IP.26
14:05-14:15	a multi-scale method of mechanical and thermal coupling analysis for thermal protection
	structure
	Jin Yin, China Academy of Launch Vehicle Technology (CALT), China
	IAC-18.C2.IP.31
14:15-14:25	Active vibration control of flexible appendages of spacecraft in during attitude maneuver
	Zelin Wang, Dalian University of Technology, China
	IAC-18.C2.IP.32
14:25-14:35	Simulation calculation method and test verification of the axial connection stiffness of the clamp
	band device
	Shipeng KANG, Aerospace System Engineering Shanghai, China, China IAC-18.C2.IP.33
	Thermo structural Analysis of Solid Rocket scarfed Nozzle with composite Ablative Liners for Crew
14:35-14:45	Escape Solid Motor
	Paul Murugan J, Indian Space Research Organization (ISRO), India
	רמנו זיומי מעמוד, וומומוז באמכב הבצבעו כוז סו עמוובמנוסוז (ובהס), וומומ

SCREEN # 24	
	IAC-18.C3.IP.2
13:15-13:25	Advanced power system architecture for future spacecraft: concept and high-level design <i>Christian Demitri, , Germany</i>
	IAC-18.C3.IP.3
13:25-13:35	Lunar based Solar energy production and transfer through Laser medium
	Alev Soenmez, LunarVis, Germany
	IAC-18.C3.IP.5
	Towards to Larger Capacity of EPS for CubeSat: Experience from Star of Aoxiang and Issues for
13:35-13:45	Future Development
	Peng Li, Shaanxi Engineering Laboratory for Microsatellites, Northwestern Polytechnical University, China
	IAC-18.C3.IP.6
13:45-13:55	Using Artificial Neural Networks to Model Diffusion in Solid State Electrolytes
	Karun Kumar Rao, University of Houston, United States
	IAC-18.C3.IP.10
13:55-14:05	Reseach on Hybrid Peak Power Tracking Toplogy and Strategy for Satellite Power System
13.33-14.03	Longlong Zhang, Shandong Aerospace Electro-technology Institute, China Academy of Space
	Technology, China
	IAC-18.C2.IP.34
14:05-14:15	A study on impacts of high enthalpy effect in designing arc jet wind tunnel experiments for High
14.05 14.15	Temperature Thermal Protection Material
	Xun Wang, CALT,CASC, China
	IAC-18.C2.IP.35
14:15-14:25	Dynamic Modeling and Robust Control for a Free-flying Flexible-link and Flexible-joint Space
	Manipulator with an Elastic Base
	xiaoyan yu, Fuzhou University, China
	IAC-18.C2.IP.37
14:25-14:35	ultralight PBO composite overwrapped pressure vessels for lunar probes
	Fei Yan, Shanghai Institute of Space Propulsion, China
14:35-14:45	A NEW SEMI-ANALYTICAL MODEL FOR PRELIMINARY ESTIMATION OF ION NUMBER DENSITY IN
	ELECTRIC THRUSTER PLUME
	Andrea Binci, Sapienza University of Rome, Italy

	SCREEN # 25
	IAC-18.C4.IP.1
13:15-13:25	Aquasonic II – Hybrid Propulsion analysis for 3D-printed fuel grains
	Christian Dierken, Hochschule Bremen, Germany
	IAC-18.C4.IP.2
13:25-13:35	Conceptual design of a hybrid sounding rocket to reach a target altitude
10.20 10.00	Jeongmoo Huh, Queen Mary University of London, United Kingdom
	IAC-18.C4.IP.6
	Design and Experimental Analysis of Hybrid Rocket Engine Additively Manufactured Complex Port
13:35-13:45	Geometries
	Alec Yenawine, University of Miami, United States
	IAC-18.C4.IP.7
13:45-13:55	EFFECT OF PYROLYSIS AND OXIDATION OF N-DECANE ON THE HEAT AND MASS TRANSFER
15.45-15.55	CHARACTERISTICS OF HYDROCARBON FUELED SUPERSONIC FILM COOLING
	Jingying Zuo, Harbin Institute of Technology, China
	IAC-18.C4.IP.8
13:55-14:05	Control System of LE-9 Engine using Electric Drive Valves
	Yusuke Funakoshi, Japan Aerospace Exploration Agency (JAXA), Japan
	IAC-18.C4.IP.12
14:05-14:15	Laser Ablation Propulsion Launch System (LAPLaS) as a basis for New Access-to-Space Paradigm.
	IOURI PIGULEVSKI, , Switzerland
14.15 14.25	IAC-18.C4.IP.13
14:15-14:25	Effect of Prestrain on Uniaxial Tensile Behavior of HTPB Composite Propellant Jiming CHENG, Northwestern Polytechnical University, China
	IAC-18.C4.IP.14
	A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and
14:25-14:35	its verification
	Yingwen YAN, Nanjing University of Aeronautics and Astronautics, China
	IAC-18.C4.IP.17
	Experimental Investigation of Injectors Design and their Effects on 1kN Performance Hybrid
14:35-14:45	Rocket Motor
	Mohammed Bouziane, Royal Military Academy, Belgium

	SCREEN # 26
13:15-13:25	IAC-18.C4.IP.18 Additive Manufacturing Technologies applied to Space Propulsion David Ritz, Sitael Spa, United States
13:25-13:35	<i>IAC-18.C4.IP.19</i> <i>Experimental Studies of the 150N HAN-based Monopropellant Attitude Control thruster</i> <i>Guo Manli, Shanghai Institute of Space Propulsion, China</i>
13:35-13:45	IAC-18.C4.IP.22 Design and fabrication of MEMS thrust measurement system for performance evaluation of MEMS thruster Youngsuk Ryu, Hanbat National University, Korea, Republic of
13:45-13:55	IAC-18.C4.IP.26 Gelled propellant rocket motor and gas generator technology in Germany - an overview - Karl Wieland Naumann, Bayern Chemie, Germany
13:55-14:05	IAC-18.C4.IP.28 ARCLIGHT - A low cost plug-and-play RIT electric propulsion system Philipp Bauer, ArianeGroup, Germany
14:05-14:15	IAC-18.C4.IP.31 Results of Field-Emission Cathode Operation on the H-II Transfer Vehicle Yasushi Ohkawa, JAXA, Japan
14:15-14:25	SLOT AVAILABLE - CONTACT ZARM IP TEAM TO UPLOAD YOUR PRESENTATION
14:25-14:35	IAC-18.C4.IP.34 Electric propulsion system based on the air-breathing radio-frequency ion thruster using the uppe atmosphere gases as propellant Svyatoslav Gordeev, Research Institute of Applied Mechanics and Electrodynamics (RIAME), MAI, Russian Federation
14:35-14:45	IAC-18.C4.IP.35 Status of Orion European Service Module Propulsion Subsystem Qualification Testing Benedikt Determann, ArianeGroup, Germany

SCREEN # 27	
	IAC-18.C4.IP.39
13:15-13:25	Development of an Electro Thermal CubeSat Pulsed Plasma Thruster
	James Bultitude, International Space University (ISU), United States
13:25-13:35	SLOT AVAILABLE – CONTACT ZARM IP TEAM TO UPLOAD YOUR PRESENTATION
	IAC-18.C4.IP.42
13:35-13:45	Experimental Investigations of Plume Characteristics of the HET-40 Hall Thruster by Langmuir
15.55 15.45	Probe
	JIA LIU, Shanghai Institute of Space Propulsion, China
	IAC-18.C4.IP.43
13:45-13:55	Effect of Nozzle Geometry on Counterflow Jets for Drag Reduction of a High Speed Vehicle
	Jaecheong Lee, Chungnam National University, Korea, Republic of
	IAC-18.C4.IP.44
13:55-14:05	3D imaging of burning aluminum particles in solid propellant using digital inline holography
	BingBingning JIN, Northwestern Polytechnical University, China
	IAC-18.C4.IP.45
14:05-14:15	LOx/LH2 engine demo platform
	Sébastien PRIOTTO, ArianeGroup, France
	IAC-18.C4.IP.48
14:15-14:25	DEVELOPMENT AND TESTING OF AN ADDITIVE LAYERED MANUFACTURED NOZZLE FOR A COLD
1 1.15 1 1.25	GAS MICRO THRUSTER
	Abdelfattah Mostafa, Omnidea-RTG GmbH, Germany
14:25-14:35	IAC-18.C4.IP.50
	development of the mems-based nozzle using drie of tapered hole technology for cube satellite
	GIWON LA, Hanbat National University, Korea, Republic of
	IAC-18.C4.IP.52
14:35-14:45	Prediction and Validation of the Catalytic Decomposition of Hydrogen Peroxide in Dual-Catalytic
14.33-14.43	Bed
	Sangwoo Jung, Korea Advanced Institute of Science and Technology (KAIST), Korea, Republic of

	SCREEN # 28
13:15-13:25	IAC-18.D1.IP.1 Multi-Asset System Design Methodology for Earth Observation Simone Flavio Rafano Carnà, OHB System AG-Bremen, Germany
13:25-13:35	IAC-18.D1.IP.2 Study on multiply-level model for solid rocket motor: construction and data structure Dong Yao, The 41st Institute of the Fourth Academy, China Aerospace Science and Technology Corporation (CASC), China
13:35-13:45	IAC-18.D1.IP.3 Software Package Design for Partial Automatization of the Design Process of Re-entry Interplanetary Modules Victor Leonov, Bauman Moscow State Technical University, Russian Federation
13:45-13:55	IAC-18.D1.IP.5 A Preliminary Design of a Mission to Triton: a Concurrent Engineering Approach Luciano Pollice, Sapienza University of Rome, Italy
13:55-14:05	IAC-18.D1.IP.6 The Virtual Testbed Approach towards Modular Satellite Systems Tobias Osterloh, RWTH Aachen University, Germany
14:05-14:15	IAC-18.D1.IP.8 Data Exchange between Space Environment Analysis Tools using the Neutral STEP Protocol Jewel Pervez, Etamax Space GmbH, Germany
14:15-14:25	IAC-18.D1.IP.9 Conceptual Design of Space Mechanism based on Model Based Engineering and Model Based Systems Engineering – A Set of concise Methods to increase Engineering Efficiency Manolo Omiciuolo, OHB System AG - Oberpfaffenhofen, Germany
14:25-14:35	IAC-18.D1.IP.12 system concurrent engineering of a people tracking satellite, a case study Elisa Itogawa, National Institute for Space Research - INPE , Brazil
14:35-14:45	IAC-18.D1.IP.17 SCRUM methodology in aerospace projects Daria Stepanova, German Orbital Systems GmbH, Germany

SCREEN # 29	
	IAC-18.D1.IP.19
13:15-13:25	An improved multidisciplinary optimization approach for satellite design
	Shuai Li, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical
	University, China
	IAC-18.D1.IP.20
13:25-13:35	Innovative Architecture Optimization Approach for Highly Reliable Satellite Attitude Control
	Kai Höfner, Technische Universität Braunschweig, Institute of Space Systems, Germany
	IAC-18.D1.IP.24
13:35-13:45	System Design of Upper Stage in KSLV-II used in Korean Lunar Exploration Program
	Sung Wook Yoon, Moscow Aviation Institute, Russian Federation
	IAC-18.D1.IP.25
13:45-13:55	Multi-fidelity design under uncertainty for the James Webb Space Telescope
10.10 10.00	Giuseppe Cataldo, National Aeronautics and Space Administration (NASA), Goddard Space Flight
	Center, United States
	IAC-18.D1.IP.26
13:55-14:05	Predictive control of a space manipulator through error expectation
	Alessandro Tringali, Space Mechatronic Systems Technology Laboratory, University of Strathclyde,
	United Kingdom
	IAC-18.D1.IP.27
14:05-14:15	FACILITATORS – Facilities for testing orbital and surface robotics building blocks
	Matteo Suatoni, G.M.V. Space and Defence, S.A., Spain
	IAC-18.D1.IP.29
14:15-14:25	An Automatic Model-based Requirement Decomposition and Verification Tool for Space Mission
	Concept Design
	Yuzhu Zhang, National Space Science Center, Chinese Academy of Sciences, China
14.25 14.25	IAC-18.D1.IP.30
14:25-14:35	Parallel, Remotely-Controlled Robotic Manipulation
	Martin Ristov, Ryerson University, Canada IAC-18.D1.IP.31
14:35-14:45	IAC-18.D1.IP.31 Integrating hardware data into simulations for attitude control design
14.55-14.45	Srikara Cherukuri, Delft University of Technology (TU Delft), The Netherlands, The Netherlands
	sinkuru Cherukuri, Deijt Oniversity oj rechnology (10 Deijt), The Netherianas, The Netherianas

SCREEN # 30	
	IAC-18.D2.IP.1
13:15-13:25	A new three-stage-to-orbit vehicle concept utilizing rocket-based combined cycle propulsion
	Cong Zhou, School of Astronautics,Northwestern Polytechnical University, China
	IAC-18.D2.IP.3
13:25-13:35	Maturity Assessment Process for USAF New Entrant Launch Systems
	Jeffrey Michlitsch, The Aerospace Corporation, United States
	IAC-18.D2.IP.5
13:35-13:45	Trajectory Optimization for Powered Descent and Landing of Reusable Rockets with Restartable
13.35-13.45	Engines
	Lin Ma, Zhejiang University, China
	IAC-18.D2.IP.8
13:45-13:55	Atmospheric Powered Descent Guidance for Rockets Precision Landing on Earth
13.45-13.55	Qingzhong Gan, Shanghai Aerospace Control Technology Institute (SACTI), Shanghai Academy of
	Spaceflight Technology (SAST), China
	IAC-18.D2.IP.9
13:55-14:05	Development of a Suborbital Inexpensive Rocket for Affordable Space Access
	Hamed Gamal, SpaceForest Ltd., Poland
	IAC-18.D2.IP.11
14:05-14:15	cfd based method for modeling convection within thermal system analysis tools for launchers
	Christian Wendt, ArianeGroup, Germany
	IAC-18.D2.IP.12
14:15-14:25	Launch Environment Measurement CubeSat and Lessons Learned
	Arielle Cohen, Cal Poly, SLO, United States
14:25-14:35	IAC-18.D2.IP.15
	Performance Optimization of the Methanol/LOX Sounding Rocket Systems
	Naser Ashknani, Kuwait University, Kuwait
	IAC-18.D2.IP.16
14:35-14:45	Low-Cost Prototype Development of a Lunar Massdriver
	Manfred Ehresmann, Institute of Space Systems, Universität Stuttgart, Germany

	SCREEN # 31
13:15-13:25	IAC-18.D3.IP.1 Initial design characteristics, testing and performance optimisation for a lunar exploration micro- rover prototype. Mickaël LAÎNÉ, Tohoku University, Japan
13:25-13:35	IAC-18.D3.IP.2 Multi-functional interface for payload interconnection of robotic systems in space Gonzalo Guerra, SENER Ingenieria y Sistemas, S.A., Spain
13:35-13:45	IAC-18.D3.IP.3 The Novel Docking Mechanism Design of Modular Space Robot Dong Yang, Northwestern Polytechnical University;National Key Laboratory of Aerospace Flight Dynamics, China
13:45-13:55	IAC-18.D3.IP.4 Fused Filament Fabrication of Polycarbonate Components in a Simulated On-Orbit Environment Marshall Quinn, Delft University of Technology (TU Delft), The Netherlands
13:55-14:05	IAC-18.D3.IP.7 h.o.m.e. lab Alessandro Martucci, Università degli Studi di Napoli "Federico II", Italy
14:05-14:15	<i>IAC-18.C4.IP.56</i> structural integrity analysis of srm grain at low temperature ignition YAO Dong, The 41st Institute of the Fourth Academy, China Aerospace Science and Technology Corporation (CASC), China
14:15-14:25	IAC-18.D1.IP.32 High-precision surface force modelling approach for space-based fundamental physics mission Takahiro Kato, ZARM, University of Bremen, Germany
14:25-14:35	IAC-18.D2.IP.17 orbital transfer performance analysis for momentum exchange tether based spacecraft system Feng Zhang, China Academy of Launch Vehicle Technology(CALT), China
14:35-14:45	IAC-18.D2.IP.18 Space "filling station Sergiy Matviyenko, JSC "RPC "KURS", Ukraine

	SCREEN # 32
	IAC-18.D4.IP.1
13:15-13:25	Space Sustainability: Overcoming future space challenges
	Vishwani Aggarwal, University of Petroleum and Energy Studies, India
	IAC-18.D4.IP.4
13:25-13:35	space internetworking service based on DTN for interplanetary Internet
	Longfei Li, Xi'an Microelectronics Technology Institute, China Aerospace Science and Technology
	Corporation (CASC), China IAC-18.D4.IP.5
13:35-13:45	
15.55-15.45	Technologies for the First Interstellar Explorer: Beyond Propulsion Anthony Freeman, JPL, United States
	IAC-18.D4.IP.6
13:45-13:55	TETHERED SLINGSHOT MANEUVER IN THE THREE-DIMENSIONAL SPACE
13.45-13.55	Antonio Prado, National Institute for Space Research - INPE , Brazil
	IAC-18.D4.IP.7
13:55-14:05	SCIENTIFIC-SPORTS COMMERCIAL PILOTED EXPEDITION TO VENUS
10100 1 1100	Oleg Aleksandrov, Private individual www.oleg.space, United States
	IAC-18.D4.IP.8
14:05-14:15	Multi-stage space elevator – the benefits of scaling
	John Knapman, , United Kingdom
	IAC-18.D4.IP.9
14:15-14:25	Cosmic Radiation Protection System for Lunar Habitation
	Vikrant Sharma, University of Petroleum and Energy Studies, India
	IAC-18.D4.IP.10
14:25-14:35	CubeSat Sundiver for Interstellar Precursor Missions
	Martin Lades, [unlisted], Germany
	IAC-18.D4.IP.11
14:35-14:45	Study on a small-scale and high-performance space elevator
	Xiaowei WANG, China Academy of Launch Vehicle Technology (CALT), China

SCREEN # 33	
	IAC-18.E1.IP.1
13:15-13:25	Human Resources Procedures for the Advancement of Gender Parity in Student Space Mission
	Projects
	Callie Lissinna, University of Alberta, Canada
	IAC-18.E1.IP.3
13:25-13:35	Exploring the possibilities to create space studies in a country which lacks of it
	Daniel Szendrei, Hungarian Astronautical Society (MANT), Hungary
	IAC-18.E1.IP.4
13:35-13:45	Using access to space to bring the 'why' back to education and STEM efforts in the classroom
	Carie Lemack, DreamUp, PBC, United States
	IAC-18.E1.IP.5
13:45-13:55	European Rover Challenge – a giant leap to the space sector career
	Lukasz Wilczynski, European Space Foundation, Poland
	IAC-18.E1.IP.12
13:55-14:05	Two Decades of ARCSSTE-E'S Postgraduate Diploma Programme: What Next?
13.55 14.05	Oladosu Olakunle, African Regional Center for Space Science and Technology Education in English
	(ARCSSTE-E), Nigeria
	IAC-18.E1.IP.14
14:05-14:15	the importance of design and build test-bed platform for cubeSat missions in the uae
	Fatema Al Hameli, UAE Space Agency, United Arab Emirates
	IAC-18.E1.IP.15
14:15-14:25	Introducing concurrent engineering to space and satellite technology undergraduate course
	Adam Dąbrowski, Blue Dot Solutions, Poland
	IAC-18.E1.IP.18
	On the road!
14:25-14:35	Space rock tour with a meteorite hunter
	By Cintia Durán
	Cintia Durán, , Mexico
	IAC-18.E1.IP.20
14:35-14:45	small meteorological rocket launch for student project payload with bio-material
	Nikolay Mullin, Skolkovo Institute of Science and Technology, Russian Federation

	SCREEN # 34
	IAC-18.D5.IP.2
13:15-13:25	"Hoopoe Nano-Satellites Constellation (Israel 70)" – a Potential Test-Bed for Dealing with Space Big Data
	Yevgeny Tsodikovich, The Open University of Israel, Israel
	IAC-18.E1.IP.21
13:25-13:35	Educational picosatellite telemetry and data download station
	Sebastian Tepper, Pontifical Catholic University of Chile, Chile
12.25 12.45	IAC-18.E1.IP.22
13:35-13:45	BlackBox: Locatable Crash Safety Data Storage Device for Sounding Rockets Marcel Vornholt, Hochschule Bremen, Germany
	IAC-18.E1.IP.23
13:45-13:55	antenna design with measuring tapes workshop
	Chloe Mireault-Lecourt, Université de Sherbrooke, Canada
	IAC-18.E1.IP.25
	LOW COST OPEN SOURCE HARDWARE AND SOFTWARE TECHNOLOGIES, INTEGRATED AS A
13:55-14:05	PAYLOAD IN A HIGH ALTITUDE BALLOON, A TOOL FOR STEAM EDUCATION IN PARAGUAY, A CASE STUDY.
	Jorge Kurita, , Paraguay
	IAC-18.E1.IP.26
14:05-14:15	Approaching latin american teenagers into space
	Federico Arturo Martinez Espinoza, Space Generation Advisory Council (SGAC), Mexico
	IAC-18.E1.IP.27
14:15-14:25	Hands-on space education with REXUS/BEXUS - Rocket and Balloon Experiments for University Students
	Kristine Dannenberg, Swedish National Space Board (SNSB), Sweden
	IAC-18.E1.IP.28
14:25-14:35	Paving Young Minds: An Enabler to Reach Out
	Zaid Shakil, TU Berlin, Germany
	IAC-18.E1.IP.31
14:35-14:45	Astronomy textbook's course outline of high schools for least developed countries
	Nebiyu Mohammed, , Ethiopia

Interactive Presentation Session Final Schedule		
	SCREEN # 35	
13:15-13:25	IAC-18.E3.IP.1 The status of the Operational Debris Mitigation Systems regulatory policy: current issues and future perspectives Annamaria Nassisi, Thales Alenia Space Italia, Italy	
13:25-13:35	IAC-18.E3.IP.5 PAROS:A technological view of the problem Angel Cuellar, Eurospace, France	
13:35-13:45	IAC-18.E3.IP.7 Current developments in Polish space law Otylia Trzaskalska-Stroinska, ESA, Belgium	
13:45-13:55	IAC-18.E3.IP.8 Potential Contributions of Commercial Actors to Space Exploration Clelia Iacomino, European Space Policy Institute (ESPI), Austria	
13:55-14:05	SLOT AVAILABLE - CONTACT ZARM IP TEAM TO UPLOAD YOUR PRESENTATION	
14:05-14:15	IAC-18.E3.IP.10 Terrorism and Space Security Nikki Coleman, UNSW Australia, Australia	
14:15-14:25	IAC-18.E3.IP.12 THE IGA AND THE INTERNATIONAL SPACE STATION: A MODEL OF COOPERATION FOR MARS ? Alessio Rossi, Sapienza University of Rome, Italy	
14:25-14:35	IAC-18.E3.IP.13 international cooperation and general public involvement for future lunar missions Laura Miquel Parra, Politecnico di Torino, Spain	
14:35-14:45	IAC-18.E3.IP.14 Undercutting international cooperation in space exploration through domestic legislation Vinay Narayan, , India	

SCREEN # 36	
13:15-13:25	IAC-18.E5.IP.3
	Construction of a Martian Habitat Using In-Situ Materials For Radiation Shielding Nihat Mert Ogut, Technical University of Delft, The Netherlands
13:25-13:35	IAC-18.E5.IP.4
	analogue habitation experiment and euromoonmars2018 campaign
	Germaine van der Sanden, ESA - European Space Agency, The Netherlands
	IAC-18.E5.IP.6
13:35-13:45	Integrating Three Disciplinary Perspectives in an Iterative Design Process for the Surface Habitat
13.35-13.45	of the First Human Mission to Mars
	Carlijn van der Werf, Delft University of Technology (TU Delft), The Netherlands, The Netherlands
	IAC-18.E5.IP.14
13:45-13:55	photobioreactor façade system for self-sustainable Moon surface habitat
	Kyunghwan KIM, , France
	IAC-18.E1.IP.32
13:55-14:05	Space Medicine Opportunities for Undergraduate Medical Education in Canada: Past, Present, and
	Future
	Adam Sirek, Western University, Canada IAC-18.E1.IP.33
14:05-14:15	
14.05-14.15	SAMI: High Resolution 3D Visualisation of ESA Earth Observation Satellite Missions Montserrat Pinol Sole, ESA - European Space Agency, The Netherlands
	IAC-18.E1.IP.35
	Methodology and Tooling of The Process of Solving Interdisciplinary Problems with Aim at
14:15-14:25	Enhancing the Efficiency of Skills in Multiple Criteria Analysis for Future Engineers
	Victor Leonov, Bauman Moscow State Technical University, Russian Federation
	IAC-18.B2.IP.21
14:25-14:35	ASTROgyro – IRU qualification and test results
	Florian Schuh, Jena-Optronik GmbH, Germany
14:35-14:45	SLOT AVAILABLE – CONTACT ZARM IP TEAM TO UPLOAD YOUR PRESENTATION

SCREEN # 37		
13:15-13:25	IAC-18.E6.IP.4	
	The Entrepreneurial Vision with a Massive Transformative Purpose: Creating fully-immersive experiential simulation-based edutainment with "Lets get S.T.E.A.M.E.D" workshops and	
	simulation EVAs using exponential technologies.	
	Susan Ip-Jewell, Mars Academy USA, United States	
13:25-13:35	IAC-18.E6.IP.6	
	CubeRover: An Enabling Technology for Planetary Exploration	
	Michael Provenzano, , United States	
	IAC-18.E7.IP.4	
13:35-13:45	The Proposed Public Procurement for Projects to Enhance Industrial Capabilities through Japanese	
10.00 10.70	Lessons Learned	
	Mizuki Tani Hatakenaka, Leiden University, The Netherlands	
13:45-13:55	IAC-18.E7.IP.5 Which future for the "global commons"?	
13.45-13.55	Kai-Uwe Schrogl, European Space Agency (ESA), France	
	IAC-18.E7.IP.7	
13:55-14:05	Public Investment Law – a tool to secure NewSpace financing?	
	Erik Pellander, BHO Legal , Germany	
	IAC-18.E7.IP.8	
14:05-14:15	Developing and Adapting Space Law to Govern Long Term and Permanent Human Settlement of	
14.05-14.15	Outer Space, the Moon and Other Celestial Bodes	
	Thomas Cheney, Northumbria University, United Kingdom	
	IAC-18.E7.IP.9	
14:15-14:25	Space 4.0: creating incentives for states to clarify and coordinate interpretations of what activities constitutes responsibility and liability under international space law	
	Mari Amanda Eldholm, ECSL, Norway	
14:25-14:35	IAC-18.E7.IP.10	
	'The Danger of Space Debris: Legal Issues and Solutions Associated with Active Debris Removal'	
	Joanna Langlade, International Institute of Air and Space Law, Leiden University, Belgium	
14:35-14:45	IAC-18.E7.IP.11	
	Legislating Space - India's 2021 Space Odyssey	
	Jai Sanyal, Other, India	

	eractive Presentation Session Final Schedule
	SCREEN # 38
13:15-13:25	IAC-18.E7.IP.13 Fledgling Polish space industry ready for lift -off Katarzyna Malinowska, Kozminski University, Poland
13:25-13:35	IAC-18.E7.IP.14 Global Space Governance: the need to adopt de-institutionalized cooperation models Jonathan Andrade, , Brazil
13:35-13:45	IAC-18.E7.IP.15 Owning the Hosted Payload and international space law Akiko Watanabe, , Japan
13:45-13:55	IAC-18.E7.IP.16 Quantum Bits of Light: The future of Satellite Quantum Key Distribution Under Export Administration Regulations and the First Amendment of the United States Constitution Marshall Mckellar, , United States
13:55-14:05	IAC-18.E7.IP.17 Ratifying the Moon Agreement with a Reservation for (Article 11.1) zeina ahmad, University of Leiden, Netherlands Antilles
14:05-14:15	IAC-18.E7.IP.18 Real-time challenges for the registration regime: where to? Georgia-Eleni Exarchou, National and Kapodistrian University Of Athens, Greece
14:15-14:25	IAC-18.E7.IP.19 The application of the principles of Community law and Public International law in the proposal of a Central American Space Policy: ad hoc the Central American Court of Justice and COCESNA. Brenda Ulate Gamboa, University of Costa Rica, Costa Rica
14:25-14:35	IAC-18.E7.IP.20 Analysis of the Intellectual Property protection instruments in the Italian space sector Michael Urso, Italian Space Agency (ASI), Italy
14:35-14:45	IAC-18.E7.IP.21 Establishing Universal Jurisdiction on Space Debris Qing Zhao, CHINA UNIVERSITY OF POLITICAL SCIENCE AND LAW, China

SCREEN # 39		
13:15-13:25	IAC-18.A7.IP.2	
	Benefits of Reuse for Future Science Missions at OHB System	
	Alison Gibbings, , Germany	
13:25-13:35	IAC-18.C4.IP.33	
	Development of a 25kN Hybrid Rocket Engine for the Stratos III sounding rocketPeter Martijn van	
	den Berg, Delft University of Technology (TU Delft), The Netherlands	
13:35-13:45	IAC-18.E5.IP.5	
	Bubbles on Mars: 360° play and performance on EVA.	
	Sarah Jane Pell, ESA Topical Team Arts & Science, Australia	
13:45-13:55	IAC-18.B1.IP. 4	
	Trace atmospheric gases, retrieved from the measurements of GOME, SCIAMACHY and GOME-2	
	and follow ons.	
	John P. IAC-18.A1.IP.13	
	REDUCTION OF BONE AND MUSCLE LOSS IN LONG-DURATION SPACE FLIGHTS BY RESISTIVE	
13:55-14:05	EXERCISES WITH DIFFERENT WEIGHT	
	Tatyana Kukoba, FSC RF-IMBP, Russian Federation	
	IAC-18.B3.IP.8	
14:05-14:15	Research on the Scheme of On Orbit Deploying CubeSats from China's Space Station	
1.00 17.10	Suquan Ding, Beijing Space Quest Ltd., China	
14:15-14:25	IAC-18.E5.IP.10	
	Artronauts, astronauts, alchemnauts and play: highlighting the importance of art and human	
	interactions in Space missions	
	Susan Ip-Jewell, ,United States	
	IAC-18.A3.IP.29	
14:25-14:35	High operability Graphical User Interface for SORATO based on robotics mission experience of ISS	
	Kazuya Imaki, Japan Manned Space Systems Corporation (JAMSS), Japan	
14:35-14:45	IAC-18.A1.IP.3	
	The :envihab – Linking biomedical research and technological innovation for Astronaut health	
	Melanie von der Wiesche, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institute of	
	Aerospace Medicine, Germany	

Interactive Presentation Session Final Schedule		
	SCREEN # 40	
13:15-13:25	IAC-18.E1.IP.9 Promoting Productive Cooperation between Space Lawyers and Engineers Anja Nakarada Pecujlic, Cologne University, Germany	
13:25-13:35	IAC-18.A3.IP.46 High-Accuracy Determination of the Upper Atmosphere Temperatures of the Sun Xi Chen, International Space University(ISU), France	
13:35-13:45	IAC-18.A6.IP.38 debris falling forecast method for spacecraft disintegration separation Dun Li, China Academy of Aerospace Aerodynamics (CAAA), China	
13:45-13:55	IAC-18.A1.IP.6 habitat design considerations for promoting crew health and interactions Brian Ramos, , United States	
13:55-14:05	IAC-18.E1.IP.36 Comparative Paleontology and Terraforming as 21st Century High School Curriculum Monica Ebert, SGT Inc. / NASA Ames Research Center, United States	
14:05-14:15	IAC-18.E1.IP.34 "Satellite Technology" and "SpaceMaster": Two International, Interdisciplinary Master Programs Emphasizing Data Processing Aspects Klaus Schilling, University Wuerzburg, Germany	
14:15-14:25	IAC-18.D1.IP.14 SYSTEM ENGINEERING CHALLENGES AND TOOLS IN MULTI-PROJECT ENVIRONMENT FARHANA TABASSUM, ISRO Satellite Centre (ISAC), ISRO, India	
14:25-14:35	IAC-18.D1.IP.23 Innovative System Design Synthesis and Optimization of Re-entry Vehicles Conceptual Design Sweety Pate, , Belgium	
14:35-14:45	IAC-18.A3.IP.15 On the feasibility of LTE for high speed mobile communications on the Moon. Florian Pivit, Nokia, Ireland	