

CALL FOR PAPERS & REGISTRATION OF INTEREST

CO-HOSTED BY

SUPPORTED BY

Connecting @ll Space People for a sustainable future

1.	Message from the International Astronautical Federation (IAF)	
2.	Message from the Local Organizing Committee (LOC)	
3.	Message from the IPC Co-Chairs	
4.	International Astronautical Federation (IAF)	
5.	Partner Organizations	1
6.	Message from the IAF Vice President for Technical Activities	17
7.	Technical Category Coordinators	18
8.	Technical Sessions and IP Sessions	19
9.	IAC 2026 Call for Papers Deadlines	62
10.	Preliminary IAC 2026 at a Glance	63
11.	Instructions for Authors	64
12.	Space in Türkiye	65
10		

1. Message from the International Astronautical Federation (IAF)

As the Incoming President of the International Astronautical Federation it is my pleasure to invite you to the upcoming 77th International Astronautical Congress in Antalya, Türkiye, from 5 to 9 October 2026. As the organizer of this prestigious event, the IAF will ensure that it continues the success of past IAC's while also striving to reach new heights.

The 77th edition is hosted by the Turkish Space Agency (TUA), an IAF member since 2021, it will take place on the beautiful Turkish riviera and promises to be an exceptional event set to explore collaboration, uncover groundbreaking insights and ignite inspiration.

This IAC's theme, "The World Needs More Space" underscores the boundless potential of space to advance technology, expand scientific knowledge, and drive human progress. It brings countries together to work on peaceful missions and reminds us that we all share one small planet in a vast universe.

With TUA as our gracious host, IAC 2026 will showcase not only Türkiye's growing space capabilities, but also provide opportunities for governments, industries, and academia to come together, at the same time maintaining IAF's commitment to ensuring that space remains a domain of innovation and cooperation for all.

IAC 2026 will offer a unique platform to share ideas and form new partnerships. Together, we will explore how space can benefit life on Earth and beyond, and why, indeed, the world needs more space.

Be part of IAF's premier international space event bringing together the brightest minds, innovators, and leaders in space from around the world!

Gabriella ARRIGO

President,
International Astronautical Federation (IAF),
Italy

2. Message from the Local Organizing Committee (LOC)

Dear Delegates,

As Minister of Industry and Technology of the Republic of Türkiye, and Chair of the IAC 2026 Local Organizing Committee, it is my distinct honour – together with our host, the Turkish Space Agency (TUA), and our co-host, SAHA Istanbul – to extend a warm invitation to you, your colleagues, and your families to join us in the vibrant city of Antalya, Türkiye, for the 77th International Astronautical Congress.

For centuries, the lands of Türkiye have been home to remarkable scientific curiosity and achievements in astronomy. From the early observations and instruments developed in the Seljuk and Ottoman eras to the pioneering work of scholars such as Ali Kuscu, this region has played a notable role in humanity's exploration of the skies. This deep-rooted heritage continues to inspire our present-day advancements in space science and technology.

In recent decades, Türkiye has transformed this heritage into tangible achievements in modern space activities. Our progress spans from communications and Earth observation satellites to participation in our first Turkish Astronaut and Science Mission. These milestones are stepping stones toward the key objectives set out in our National Space Program – an ambitious roadmap that embraces cooperation, innovation, and the open exchange of knowledge. By setting our sights on lunar exploration, developing a regional positioning and timing system, and establishing a national spaceport, we aim to contribute not only to our own progress but also to the shared advancement of the global space community.

IAC 2026 will serve as a unique platform where the ambitions of our National Space Program intersect with the broader goals of the global space community. Our unique location at the crossroads of continents, combined with a rich cultural heritage and a rapidly growing space industry, offers an exceptional setting for collaboration and exchange. Antalya, renowned for its history, hospitality, and natural beauty, will provide an inspiring backdrop for the global space community.

The theme of IAC 2026, *The World Needs More Space*, will frame a programme inviting visionary ideas, innovative technologies, and pioneering research. I encourage you to submit abstracts for the Technical Sessions, share your expertise, and take part in discussions that will help shape the future of space exploration and its applications.

We look forward to welcoming you to Antalya for what promises to be a memorable and impactful congress – one that will strengthen partnerships, inspire the next generation, and advance our shared journey into space.

H.E. Mehmet Fatih KACIR

Chair,
IAC 2026 Local Organizing Committee (LOC),
Minister of Industry and Technology,
Türkiye

3. Message from the International Programme Committee (IPC) Co-Chairs

On behalf of the International Programme Committee, it is our pleasure to invite you to submit an abstract for the 77th International Astronautical Congress which will be held in Antalya, Türkiye.

The event will be organized by the International Astronautical Federation (IAF), and will be hosted by the Turkish Space Agency and Co-Hosted by SAHA Istanbul. For more than 70 years, IAF has been a steady force in helping the growth of the global space field by catalyzing scientific and technological innovation by bringing the best minds of the space community together. Specifically, IAC has been one of the most important venues that allowed space professionals to share their ideas and stimulate new thoughts that propelled the progress in the space field. Interest in astronomy in Türkiye's Anatolian land goes back many centuries. During the Seljuk and Ottoman era, Anatolia played a central role in enhancing humanity's understanding of the science of astronomy, by developing astronomical devices and making new observations and scientific discoveries. This deep-rooted heritage plays an important role in Türkiye's growing public interest and its recent advancements in space science and technology. Türkiye recently sent its first astronaut to the International Space Station and in late 2026 planning to launch an indigenously developed probe to the moon as the first phase of its Lunar program. With the help of the government supported projects along with the growth of the commercial space industry, Türkiye's young and dynamic population is eager to contribute to the rapidly evolving global space sector.

"The World Needs More Space", the theme for IAC 2026 promotes the idea of a growing and thriving space to help address some of the most important global challenges. Space, as a unifying power for nations, must be diversified to the entire globe which is already happening through the wave of "New Space". As a nation inspiring to become an important player in space systems and technologies, Türkiye wants to play a significant role in supporting the diversified and the sustainable growth of global space activities. It is expected that more than 10,000 space professionals from the academic community, industry and government along with the space enthusiasts will attend IAC 2026 in Antalya.

You can submit one or more abstracts to more than 180 technical sessions that will be held in Antalya. A limited number of these abstracts will be selected as oral presentations or for interactive sessions which would allow you to share your ideas with the best minds in your field. Publications at IAC, which are peer reviewed, are regarded highly in academic circles and widely used by industry. Antalya, with its incredible historical sites and natural beauty, will be an inspirational location to catalyze the generation of new ideas that will further enhance humanity's aspirations in space. As IAC's International Programme Committee, we are looking forward to receiving your abstract for IAC 2026 in Antalya. As the space field continues to move forward, IAF will continue to be in the center of this progress in IAC 2027 which will be held in in Poznań, Poland.

Arif KARABEYOĞLU

IAC 2025-2026 IPC Co-Chair,

Board Member, Turkish Space Agency (TUA),
Faculty Member,
Koc University,
Türkiye

Adam OKNIŃSKI

IAC 2026-2027 IPC Co-Chair,

Director, Space Technologies Center,
Łukasiewicz Research Network – Institute of
Aviation (ILOT),
Poland

4. International Astronautical Federation (IAF)

Founded in 1951, the International Astronautical Federation is the world's leading space advocacy body. The IAF has 604 members from 82 countries, including all leading space agencies, companies, societies, associations and institutes worldwide.

Following its theme - A space-faring world cooperating for the benefit of humanity and its motto Connecting @II Space People for a Sustainable Future - the Federation advances knowledge about space and fosters the development and application of space assets by advancing global cooperation.

As the organizer of premier global space events such as the International Astronautical Congress (IAC), IAF Global Conferences and other specialized meetings, the IAF actively promotes the peaceful use of space and facilitates the exchange of scientific and technical knowledge across the international space community.

International Astronautical Federation (IAF)

100 Avenue de Suffren 75015 Paris, France

Tel: +33 1 45 67 42 60 Website: www.iafastro.org

Members of IAF Bureau 2025 – 2026:

IAF PRESIDENT Gabriella ARRIGO Director, International Affairs Directorate, Italian Space Agency (ASI),

IAF PAST PRESIDENT Clay MOWRY Chief Executive Officer, American Institute of Aeronautics and Astronautics (AIAA), United States

VP: NEXT GENERATION **ACTIVITIES** Amal ALBINALI Chief. Strategic Planning & Projects Management Departmer Bahrain Space Agency (BSA), Rahrain

RELATIONS Samaddin ASADOV Deputy Minister of Digital Development and Transport of the Republic of Azerbaijan, Azerbaijan

VP: SCIENCE AND ACADEMIC

VP: GLOBAL MEMBERSHIP **DEVELOPMENT AND FINANCIAL MATTERS** Michal BRICHTA Director, Slovak Space Office - Industry Branch. Slovakia

INTERNATIONAL **ORGANIZATIONS** Yusuf KIRAC Chairman of The Board and President. Turkish Space Agency (TUA),

VP: RELATIONS WITH

VP: DIVERSITY INITIATIVES Nikol KOLEVA Deputy Executive Director. Indian Space Research Space Generation Advisory Council (SGAC), Bulgaria

VP: SOCIETIES AND **MUSEUMS** Daming LI President, China Academy of Space Technology (CAST), China

VP: ASTRONAUTS RELATIONS AND OUTREACH Michael LÓPEZ-ALEGRÍA Chief of the Astronaut Office

and Ax-1 Mission Commander, Axiom Space, LLC, United States / Spain

SPACE ECONOMY **Geraldine NAJA** Director of Commercialisation, Industry and Competitiveness,

European Space Agency (ESA),

France

VP: HONOURS AND AWARDS Asanda NTISANA Acting Managing Director, Earth Observations, South African National Space Agency (SANSA), South Africa

VP: SPACE AGENCY RELATIONS Enrico PALERMO Australian Space Agency. Australia

VP: TECHNICAL ACTITIVIES AND IAF GLOBAL **NETWORKING FORUM**

David SPENCER Professor, Department of Aerospace Engineering, The Pennsylvania State University, United States

VP: EMERGING SPACE **ECOSYSTEMS Gaspard TWAGIRAYEZU** Chief Executive Officer, Rwanda Space Agency, Rwanda

IAF GENERAL COUNSEL
Sergio MARCHISIO
Full Professor of International Law,
Sapienza University of Rome,
Italy

IAF HONORARY SECRETARY
Geir HOVMORK
Retired,
Norwegian Space Agency (NOSA),
Norway

IAF EXECUTIVE DIRECTOR
Christian FEICHTINGER
Executive Director,
IAF Secretariat,
Austria

IAF Secretariat

Christian FEICHTINGER, Executive Director
Giulia Maria BERARDI, Deputy Executive Director
Myriam MORABET, General Manager
Giulia ANGELETTI, Senior Projects and Office Manager
Alessandra D'ARGENIO, Senior Projects Manager
Martina FABBIANI, Senior Projects Manager

Evelina HEDMAN, Senior Communications & Marketing Manager

Stefano PASCALI, Senior Projects Manager Constance DELAUNE, Projects Manager Svetlana VAKHRINA, Projects Manager Martyna NOWAK, Projects Assistant Martin FEICHTINGER, Administrative & Project Support
Sebastian FEICHTINGER, Social Media
Elena FEICHTINGER, Special Advisor
(Volunteer)

IAF Member Organizations 2025

4iG Space and Defence Technologies	Hungary	Andøya Space Center	Norway
A9C Capital	Bahrain	Angelantoni Test Technologies Srl	Italy
AAKA SPACE STUDIO CORP	Canada	Angkasa-X	Malaysia
Access	Germany	Angolan National Space Program Management Office	Angola
ADA SPACE	China	(GGPEN)	
Adriatic Aerospace Association	Croatia	ANU Institute for Space (InSpace)	Australia
Advanced Space	United States	ANYWAVES	France
AED Cluster Portugal	Portugal	ArianeGroup	France
Aerojet Rocketdyne	United States	Arianespace	France
Aerospace Research Institute	Iran	Arizona State University	United States
Aerospace Valley	France	ArkEdge Space	Japan
Agence Spatiale Algérienne (ASAL)	Algeria	Armenian Aerospace Agency	Armenia
Agencia Espacial Española	Spain	ARRIBES	Spain
Agencia Espacial Mexicana (AEM)	Mexico	ASELSAN	Türkiye
AGH University of Krakow	Poland	Asgardia	Austria
AGI	United States	Asia-Pacific Space Cooperation Organization (APSCO)	China
Agrupacion Astronautica Espanola	Spain	Asociacion Civil Universidad de Ciencias y Humanidades	Peru
AIPAS – Association Of Italian Space Enterprises	Italy	Association Aéronautique & Astronautique de France (3AF)	France
Air and Space Academy (AAE)	France	Association for Astronautics and Space Technologies (UAST)	Croatia
Airbus Defence and Space GmbH	Germany	Association of Space Explorers (ASE)	United States
Airbus Defence and Space SA	Spain	Associazione Italiana di Aeronautica e Astronautica (AIDAA)	Italy
Airbus Defence and Space SAS	France	Astralintu Space Technologies	Ecuador
Airbus Ltd.	United Kingdom	Astra-Terra Ltd.	United Kingdom
Airbus Netherlands B.V.	The Netherlands	Astrax	Japan
Akula Tech	Australia	Astroengineering Technologies LLC	Belarus
ALATYR	France	Astronautical Society of India	India
ALE	Japan	Astroscale	Japan
Alén Space	Spain	AstroWorks Ventures LLC	United States
All Nations University	Ghana	Australian Space Agency	Australia
Alma Mater Studiorum - University of Bologna	Italy	Austrian Research Promotion Agency (FGG)	Austria
Alpha Impulsion	France	AUSTROSPACE	Austria
ALTEC	Italy	Axiom Space	United States
American Astronautical Society (AAS)	United States	Azercosmos Space Agency of the Republic of Azerbaijan	Azerbaijan
American Institute of Aeronautics and Astronautics (AIAA)	United States	Bahrain Space Agency (BSA)	Bahrain
American Institute of Physics	United States	Baku State University	Azerbaijan
Andart Global	United Arab	Bauman Moscow State Technical University	Russian Federation
	Emirates	Beihang University	China

		0 11 (5	5.1.1
Beijing FutureSpace Space Technology Institute	China	Council of European Aerospace Societies (CEAS)	Belgium
Beijing Infinite Education	China	Croatian Astronautical and Rocket Federation (HARS)	Croatia
Beijing Interstellar Glory Space Technology	China	CSIRO Space and Astronomy	Australia
Beijing Minospace Technologies	China	CubeSpace	South Africa
Beijing Smart Satellite Technology	China	Curtin University	Australia
Beijing SpaceD Aerospace Application & Science Education Technology	China	Cydonia Foundation Cyprus Space Exploration Organisation (CSEO)	Colombia Cyprus
Beijing Sunwise Space Technology	China	Czech Space Alliance	Czech Republic
Beijing Zerog Space Technology Co., LTD	China	Dalian University of Technology (DUT)	China
Belgian Federal Science Policy Office (BELSPO)	Belgium	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Denmark
Ben-Gurion University of the Negev	Israel	Danish Aerospace Company A/S Danish Astronautical Society	Denmark
Berkeley SETI Research Center	United States	Dassault Aviation	France
BERLIN SPACE Consortium GmbH	Germany	Dcubed GmbH	Germany
beSpace	Germany		•
beyond gravity	Switzerland	Deep Space Exploration Laboratory (Tiandu Laboratory)	China
BIOSEC SOLUTIONS LIMITED	Nigeria	Delft University of Technology	Spain The Notherlands
Black Engine Aerospace	Germany	Delft University of Technology	The Netherlands
Blue Origin	United States	Department of Electronic Communications	Cyprus United States
Boryung Corporation	Republic of Korea	Department of Space Studies, University of North Dakota	
Brazilian Space Agency (AEB)	Brazil	Dereum Labs	Mexico
Bryce Space and Technology	United States	Designers in Space Community	United Kingdom
Budapest University of Technology and Economics	Hungary	Deutsche Gesellschaft für Luft-und Raumfahrt, Lilienthal- Oberth (DGLR)	Germany
C6 Launch Systems	Canada	Deutsches Zentrum für Luft-und Raumfahrt (DLR)	Germany
Canadensys Aerospace Corporation	Canada	Dhruva Space Private Limited	India
Canadian Aeronautics & Space Institute (CASI)	Canada	DHV Technology	Spain
Canadian Space Agency (CSA)	Canada	D-Orbit	Italy
Canadian Space Society	Canada	Dragonfly Aerospace	South Africa
Cangyu Space	China	Dynetics	United States
CAS Space	China	Ecole Polytechnique Fédérale de Lausanne (EPFL)	Switzerland
Center for Space Commerce and Finance	United States	Ecosmic s.r.l.	Italy
Center of Space Exploration, Ministry of Education (COSE)	China	Edge Aerospace	United States
Central American Association for Aeronautics and Space	Costa Rica	Edrive Space Technology	China
(ACAE)		Egyptian Space Agency	Egypt
Central Research Institute for Machine Building (JSC TSNIIMASH)	Russian Federation	ELITAL SPACE AND DEFENCE	Italy
Centre for Mechanical and Aerospace Science and	Portugal	EllipSpace	China
Technologies (C-MAST)	Fortugal	Embedded Instruments and Systems (EMXYS)	Spain
Centre National de la Cartographie et de la Teledetection	Tunisia	Embry-Riddle Aeronautical University	United States
(CNCT)		EMPOSAT	China
Centre National d'Etudes Spatiales (CNES)	France	EMROD	Germany
Centre Royal de Télédétection Spatiale (CRTS)	Morocco	EnduroSat	Bulgaria
Centre Spatial de Liège (CSL)	Belgium	Engineers Australia	Australia
Centro de Investigacion y Difusion Aeronautico Espacial	Uruguay	EngineRoom.io	Australia
(CIDA-E)	A	EOIntelligence	Canada
Centro Interdisciplinario de Estudios Espaciales	Argentina	EOS Data Analytics	United States
CHASM China Head Agreemen Technology	Switzerland	Epyphite Corp	Singapore
Chinas Society of Astronouties (CSA)	China	Equatorial Launch Australia	Australia
Chinese Society of Astronautics (CSA)	China	Estonian Business Innovation Agency	Estonia
CIRA Italian Aerospace Research Centre	Italy	EUMETSAT	Germany
Cologia Fodorado de Ingeniares y de Arquitestes de Costa	India	EURISY	France
Colegio Federado de Ingenieros y de Arquitectos de Costa Rica (CFIA)	Costa Rica	EURO2MOON	Luxembourg
Colombian Space Agency	Colombia	EUROLAB Laboratory	Türkiye
Colorado Center for Astrodynamics Research, University of	United States	European Conference for Aero-Space Sciences (EUCASS)	Belgium
Colorado		European Organization for Nuclear Research (CERN)	Switzerland
Comision Nacional de Actividades Espaciales (CONAE)	Argentina	European Space Agency (ESA)	France
Commission d'Astronautique de l'Academie Roumaine	Romania	European Space Foundation	Poland
Community of Ariane Cities (CVA)	France	European Space Policy Institute (ESPI)	Austria
COMSPOC	United States	European Test Services (ETS)	The Netherlands

	0 10 10		
European Union Agency for the Space Programme (EUSPA) Eurospace	Czech Republic France	Indian National Space Promotion and Authorization Centre (IN-SPACe)	India
Eutelsat	France	Indian Space Association (ISpA)	India
Everlight Space	China	Indian Space Research Organization (ISRO)	India
Exobotics Ltd	United Kingdom	Indian Technology Congress Association	India
Fachhochschule Wiener Neustadt	Austria	Indonesian Space Agency Secretariat (INASA)	Indonesia
Faculty of Electrical Engineering and Information	Slovakia	Infostellar	Japan
Technology of Slovak University of Technology in Bratislava		IngeniArs	Italy
Federal Aviation Administration Office of Commercial Space	United States	INNOSPACE	Korea, Republic of
Transportation (FAA/AST)		Innovation Academy for Microsatellites, Chinese Academy	China
Felix & Paul Studios	Canada	of Sciences	
Finnish Astronautical Society	Finland	Institut d'Estudis Espacials de Catalunya	Spain
Firefly Aerospace	United States	Institut Français d'Histoire de l'Espace	France
Flinders University	Australia	Institut Polytechnique des Sciences Avancées (IPSA)	France
Fondation pour la Recherche Stratégique	France	Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)	France
Fondazione E. Amaldi	Italy	Institute for Q-shu Pioneer of Space (iQPS)	Japan
For all Moonkind	United States	Institute of Biomedical Problems (IBMP), Russian Academy of Sciences (RAS)	Russian Federation
FOSSA Systems	Spain	Institute of Experimental and Applied Physics, Czech	Czech Republic
Fraunhofer Alliance Space	Germany	Technical University in Prague	ezeen nepabne
Fundacion para el Desarrollo de las Ciencias la Sociedad y el Estado (FUNDECISE)	Costa Rica	Institute of Mechanics, Chinese Academy of Sciences	China
Future Space Leaders Foundation	United States	Institute of Space Systems, University of Stuttgart	Germany
G.A.U.S.S.	Italy	Instituto Nacional de Pesquisas Espaciais (INPE)	Brazil
Geoestudios Ingenieria	Colombia	Instituto Nacional de Tecnica Aeroespacial (INTA)	Spain
Geo-Informatics and Space Technology Development	Thailand	Instituto Tecnológico de Costa Rica (TEC)	Costa Rica
Agency (GISTDA)	manana	Intella S.r.l.	Italy
Georgia Tech Space Research Institute	United States	International Alliance of Aerospace Information Industry	Singapore
Geospatial Al Sdn Bhd	Malaysia	Ltd.	
German Aerospace Industries Association (BDLI)	Germany	International Association for the Advancement of Space	The Netherlands
Ghalam	Kazakhstan	Safety International Lunar Observatory Association	United States
GIFAS	France	International Peace Alliance	China
Gilmour Space	Australia	International Space Center - Space Park Israel Ashkelon	Israel
GK Launch Services	Russian Federation	International Space University (ISU)	France
GKN Aerospace Engine Systems	Sweden	International Space Offiversity (130) Internationaler Förderkreis für Raumfahrt – Hermann	Germany
GMV Aerospace & Defence	Spain	Oberth – Wernher von Braun	Germany
Gokmen Space and Aviation Training Center (GUHEM)	Türkiye	Intersputnik International Organization of Space	Russian Federation
GomSpace Aps	Denmark	Communications	
Gran Sasso Science Institute	Italy	Invap	Argentina
Graz University of Technology (TU Graz)	Austria	Involve	Italy
GTD	Spain	Ionosphere institute	Kazakhstan
GTL Co., Ltd.	Republic of Korea	Iranian Space Agency	Iran
Gumush Aerospace & Defense	Türkiye	iSaisei Corporation	Italy
Habitat Company GR	Mexico	Isar Aerospace SE	Germany
Harbin Institute of Technology	China	ispace	Japan
Harpy Aerospace	India	Israel Aerospace Industries	Israel
HAVELSAN	Türkiye	Israel Space Agency	Israel
HE Space	Germany	Italian Space Agency (ASI)	Italy
Hebrew University of Jerusalem	Israel	Japan Aerospace Exploration Agency (JAXA)	Japan
Hellenic Space Centre	Greece	Japan Manned Space Systems Corporation (JAMSS)	Japan
Hermann-Oberth-Raumfahrt Museum	Germany	Japan Society for Aeronautics and Space Sciences (JSASS)	Japan
High Technology Unit (UAT) Faculty of Engineering		Japanese Rocket Society	Japan
Hong Kong Polytechnic University	Mexico	Japanese Nocket Society	•
Hungarian Astronautical Society (MANT)	Mexico China	Joanneum Research	Austria
Hungarian Astronautical Society (MANT)			
IABG Industrieanlagen Betriebsgesellschaft	China	Joanneum Research	Austria Russian Federation Russian Federation
	China Hungary	Joanneum Research JSC Glavkosmos	Austria Russian Federation
IABG Industrieanlagen Betriebsgesellschaft	China Hungary Germany	Joanneum Research JSC Glavkosmos JSC NPO Energomash	Austria Russian Federation Russian Federation
IABG Industrieanlagen Betriebsgesellschaft Iceland Space Agency	China Hungary Germany Iceland	Joanneum Research JSC Glavkosmos JSC NPO Energomash JSC SRC Progress	Austria Russian Federation Russian Federation Russian Federation
IABG Industrieanlagen Betriebsgesellschaft Iceland Space Agency ICEYE	China Hungary Germany Iceland Finland	Joanneum Research JSC Glavkosmos JSC NPO Energomash JSC SRC Progress Karman Project	Austria Russian Federation Russian Federation Russian Federation Germany

Keldysh Research Center	Russian Federation	Nanjing University of Aeronautics and Astronautics	China
Kenya Space Agency	Kenya	Nanoracks	United States
Khalifa University of Science and Technology	United Arab	Nara Space	Republic of Korea
Kilalia Offiversity of Science and Technology	Emirates	National Aeronautics and Space Administration (NASA)	United States
Khrunichev State Research & Production Space Center	Russian Federation	National Aerospace Agency (NASA) of Azerbaijan Republic	Azerbaijan
King Abdulaziz City for Science & Technology (KACST)	Saudi Arabia	National Astronomical Research Institute of Thailand	Thailand
Kongsberg NanoAvionics (NanoAvionics LLC)	Lithuania	National Autonomous University of Honduras	Honduras
Kongsberg Satellite Services	Norway	National Institute of Information and Communications	Japan
Korea Advanced Institute of Science and Technology (KAIST)	Republic of Korea	Technology (NICT)	Japan
Korea AeroSpace Administration	Republic of Korea	National Oceanic and Atmospheric Administration (NOAA)	United States
Korea Aerospace Industries	Korea, Republic of	National Space Centre	Ireland
Korea Aerospace Research Institute (KARI)	Korea, Republic of	National Space Research and Development Agency	Nigeria
Korea Association for Space Technology Promotion (KASP)	Korea, Republic of	(NASRDA)	
Korea Astronomy and Space Science Institute	Korea, Republic of	National Space Society	United States
Korea Electrotechnology Research Institute	Republic of Korea	National Space Society Colombia	Colombia
Korea Testing Laboratory	Republic of Korea	National University of Science and Technology	Pakistan
Kyushu Institute of Technology	Japan	NEC Corporation	Japan
Laboratory for Space Research, The University of Hong Kong	Hong Kong - China	Netherlands Aerospace Centre (NLR)	The Netherlands
LandSpace Technology Corporation	China	Netherlands Space Office (NSO)	The Netherlands
Lavochkin Science and Production Association	Russian Federation	Netherlands Space Society (NVR)	The Netherlands
Law Offices of Sterns and Tennen	United States	NeuraSpace	Portugal
Leanspace	France	New Zealand Space Agency	New Zealand
Leonardo	Italy	NGC Aerospace	Canada
Libre Space Foundation	Greece	Nokia of America Corporation	United States
LIQUIFER Systems Group	Austria	Northrop Grumman Corporation	United States
Lithuanian Museum of Ethnocosmology	Lithuania	Northwestern Polytechnical University	China
Lithuanian Space Association (LSA)	Lithuania	Norwegian Space Agency (NOSA)	Norway
Lockheed Martin Corporation	United States	Nova Systems	Australia
Łukasiewicz Research Network – Institute of Aviation (ILOT)	Poland	Novaspace	France
Lunar Policy Platform (LPP)	Estonia	Novespace	France
Luxembourg Space Agency	Luxembourg	Obuda University	Hungary
Malaysia Space Industry Consortium (MASIC)	Malaysia	ocullospace	Singapore
Malaysian Space Agency (MYSA)	Malaysia	Office for Space Technology & Industry, Singapore	Singapore
Mars Planet	Italy	Office National d'Etudes et de Recherches Aérospatiales	France
Massachusetts Institute of Technology	United States	(ONERA)	Halland Charles
Maxar	United States	OffWorld	United States
McGill Institute for Aerospace Engineering (MIAE)	Canada	OHB Italia	Italy
MDA Space	Canada	OHB System AG Paranas	Germany
MEDES - IMPS	France	OHB System AG-Bremen	Germany
MicroDrive Space	China	Omspace Rocket and Exploration Pvt Ltd	India
Miprons	Italy	Open Cosmos	United Kingdom
Mission Control Space Services	Canada	Open Lunar Foundation	United States
Mission Space	Luxembourg	Orbite Fab	United Kingdom
MITRE Corporation	United States	Orbital Express Launch Limited (Orbex)	United Kingdom Costa Rica
Mitsubishi Electric Corporation	Japan	Orbital Space Technologies	
Mitsubishi Heavy Industries	Japan	OrbitArch	India China
Mohammed Bin Rashid Space Centre (MBRSC)	United Arab	Orienspace Technology Recific West Data Bty Ltd. Trading as ACME SpaceTek	
	Emirates	Pacific West Data Pty Ltd - Trading as ACME SpaceTek	Australia
Monaco Space Office	Monaco	Pakistan Space and Upper Atmosphere Research Commission (SUPARCO)	Pakistan
Monacosat S.A.M.	Monaco	Paraguayan Space Agency	Paraguay
Moon Village Association (MVA)	Austria	Philippine Space Agency (PhilSA)	Philippines
Moonshot Space	Israel	PIESAT Information Technology Co.,Ltd.	China
Moroccan Initiative for Space Industry (MISI)	Morocco	PJSC "Elmiz"	Ukraine
Moscow Aviation Institute (MAI)	Russian Federation	Planet Labs Germany	Germany
MSP Philippines	Philippines	Plan-S Satellite and Space Technologies	Türkiye
MT Aerospace	Germany	Polish Academy of Sciences	Poland
Mudd Law	United States	Polish Space Agency (POLSA)	Poland

Polish Space Industry Association	Poland	SES	Luxemburg
Politecnico di Milano	Italy	SETI Institute	United States
Politecnico di Torino	Italy	Shaanxi Engineering Laboratory for Microsatellites	China
Portuguese Space Agency	Portugal	Shaanxi XingYi Space Technologies	China
Poznan University of Technology	Poland	Shamakhy Astrophysical Observatory	Azerbaijan
Prague Security Studies Institute	Czech Republic	Shanghai Anzhe Technology Co., Ltd	China
Praxis Aerospace	Australia	Shanghai Azimuth Data Technology	China
PRETO BUSINESS Corp.	United States	Sharjah Academy for Astronomy, Space Sciences, and	United Arab
PricewaterhouseCoopers Advisory (PwC)	France	Technology (SAASST)	Emirates
Privateer Space	United States	Shenzhen MagicCubeSat Technology Co., Ltd.	China
Proximai	United States	Shenzhen University	China
Purple Mountain Observatory (PMO)	China	Shoal Group	Australia
Qosmosys	Singapore	SIDERALIS Foundation	Ecuador
Quality Training Academy	Saudi Arabia	Sierra Space	United States
Qwaltec	United States	Simera Sense	Belgium
Rafael Advanced Defense Systems	Israel	Singapore Space and Technology Think Tank (SSTTT)	Singapore
Rakia Mission	Israel	Sitael	Italy
Ramirez de Arellano y Abogados, S.C. Law Firm	Mexico	Slovak Investment and Trade Development Agency (SARIO)	Slovakia
Redwire Space	United States	- Slovak Space Office	
RELIASAT	Canada	SMARTCIRCUITS INNOVATION Private Limited	India _
Remred	Hungary	SODERN	France
Rendezvous Robotics	United States	Solar MEMS Technologies S.L	Spain
ReOrbit	Finland	Solar Space Technologies Pty Ltd	Australia
Rocket Factory Augsburg (RFA)	Germany	South African National Space Agency (SANSA)	South Africa
ROKETSAN Roket Sanayi ve Ticaret	Türkiye	South African Space Association (SASA)	South Africa
Romanian Space Agency (ROSA)	Romania	Space Applications Services NV/SA	Belgium
ROSCOSMOS	Russian Federation	Space Arbitration Association	France
Rovsing A/S	Denmark	Space Canada Corporation	Canada
RUDN University	Russian Federation	Space Center Houston	United States
Russian Academy of Sciences	Russia	Space Centre Australia	Australia
Rwanda Space Agency	Rwanda	Space Commercial Services Holdings	South Africa
S.P. Korolev Rocket and Space Corporation Energia	Russian Federation	Space Entrepreneurship Institute	Poland
Safe on Orbit	Brazil	Space Flight Laboratory (SFL)	Canada
Safran Aircraft Engines	France	Space Foundation	United States
SAHA Istanbul Defence & Aerospace Cluster	Türkiye	Space Generation Advisory Council (SGAC)	Austria
Saint Petersburg State University of Aerospace	Russian Federation	Space Industry Association of Australia	Australia
Instrumentation		Space Latam	Paraguay
Samara National Research University (Samara University)	Russian Federation	Space Policy Institute, George Washington University	United States
Sant'Anna School of Advanced Studies	Italy	Space Products and Innovation (SPIN)	Italy
Sapienza University of Rome	Italy	Space Renaissance International (SRI)	Italy
SARS Technology and Innovation Private Limited	India	Space Research Institute (IKI), Russian Academy of Sciences (RAS)	Russian Federation
SARsatX	Saudi Arabia	Space Sustainability Rating	Switzerland
Satcom Industry Association (SIA-India)	India	Space Tech Expo - Smarter Shows	United Kingdom
Sateliot	Spain	Space Trust	United Kingdom
Satellite Research Center, Nanyang Technological University	Singapore	SpaceBrainx	France
(NTU)	Contr	SpaceBuzz	The Netherlands
Satellogic	Spain	SpaceForest	Poland
Satlab	Denmark	SpaceLand Africa	Mauritius
Satrec Initiative	Korea, Republic of	Spacely Chile	Chile
Saudi Space Agency (SSA)	Saudi Arabia	SpaceNav	United States
Science Malta	Malta	SpaceNed	The Netherlands
Science Museum Group	United Kingdom	SPACETIDE Foundation	Japan
SDA Bocconi School of Management, Bocconi University	Italy	Spacety	China
Secure World Foundation	United States	SpaceX	United States
SEMECCEL Cité de l'Espace	France	Spade	France
Serbian Office for Space Sciences, Research and Development (SERBSPACE)	Serbia	Spartan Space	France
		r in the second	

STAR.VISION Aerospace Group Limited	China	UAE Space Agency	United Arab
Starbound Space Solutions	Australia		Emirates
Stardust	Canada	Ubinexus	China
Starfire 7	United States	UK Space Agency	United Kingdom
STARS International University	Uzbekistan	UNIO Enterprise GmbH	Germany
State Space Agency of Ukraine (SSAU)	Ukraine	United Launch Alliance	United States
Stichting Space Professionals Foundation (SSPF)	The Netherlands	United States Accreditation	United States
Sultanate of Oman - National Centre for Space, Advanced	Oman	Universidad Nacional Tecnológica de Lima Sur	Peru
Technology and Artificial Intelligence, Ministry of Transport, Communications and Information Technology		Universitas Telkom Universiti Teknologi Mara (UITM)	Indonesia Malaysia
Surrey Satellite Technology (SSTL)	United Kingdom	University Mediterranea of Reggio Calabria	Italy
Swedish Society for Aeronautics and Astronautics	Sweden	University of Adelaide	Australia
Swedish Space Corporation (SSC)	Sweden	University of Alabama in Huntsville	United States
Swiss Space Office (SSO)	Swizerland	University of Canterbury	New Zealand
Swissmem	Switzerland	University of Naples "Federico II"	Italy
SwissSpace Association	Switzerland	University of New South Wales	Australia
Teaching Science and Technology (TSTI)	United States	University of Padua	Italy
Technical University of Košice	Slovak Republic	University of Strathclyde	United Kingdom
Technical University of Munich	Germany	University of Tartu	Estonia
Technische Universität Dresden	Germany	University of Trento, Department of Physics, National PhD in	Italy
Technische Universität Wien (TU Wien)	Austria	Space Science and Technology	,
Techno System Developments	Italy	University of Vigo	Spain
Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences	China	University Space Program, Universidad Nacional Autonoma de Mexico	Mexico
Telespazio	Italy	University Wuerzburg	Germany
Telespazio VEGA UK	United Kingdom	USPACE	China
Tensor Tech	Taiwan, China	Uzbekspace Agency	Uzbekistan
Tesat-Spacecom	Germany	Vast	United States
Thales Alenia Space France	France	Veganaut, Inc	United States
Thales Alenia Space Italia	Italy	VENTURI SPACE	Monaco
The Aerospace Corporation	United States	Viasat	United States
The Andy Thomas Space Foundation	Australia	Victorian Space Science Education Centre	Australia
The Astro Ben Podcast	United Kingdom	Vieira de Almeida & Associados	Portugal
The Boeing Company	United States	Vietnam National Space Center (VNSC)	Vietnam
The British Interplanetary Society	United Kingdom	Virgin Galactic	United States
The Chinese Aeronautical and Astronautical Society located in Taipei	Taiwan, China	Viterbi School of Engineering (USC) VITO nv	United States Belgium
The Exploration Company	Germany	Von Karman Institute for Fluid Dynamics	Belgium
The Federal University of Technology, Akure (FUTA)	Nigeria	Voyager Technologies	United States
The Johns Hopkins University Applied Physics Laboratory	United States	VZLU AEROSPACE, a.s.	Czech Republic
The Korean Society for Aeronautical and Space Sciences	Korea, Republic of	WeMe Global	Austria
The National Space Science and Technology Center (NSSTC)	United Arab Emirates	Wenchang International Aerospace City Administration	China
The Ohio State University College of Engineering	United States	WeSpace Technologies Limited Western Australian Space Science Education Centre	Israel Australia
The Planetary Society	United States	· ·	
The Sergei Korolev Space Museum	Ukraine	Wirtschaftsförderung Bremen (WFB)	Germany
The University of Sydney	Australia	Women in Aerospace Europe (WIA-E) World Space Week Association	The Netherlands United States
ThrustMe	France	·	China
TNO	The Netherlands	Yinhe Hangtian (Beijing) Internet Technology Company Limited (GalaxySpace)	
Transpace Technologies Pvt Ltd	India	Yuzhnoye State Design Office	Ukraine
Trapp Networks PR Social Media	Germany	ZARM Fab	Germany
Tsinghua University	China	Zenith Law Firm	China
Turin Polytechnic University in Tashkent	Uzbekistan	Zhejiang E.O. Paton Welding Technology Research Institute	China
Turkish Space Agency (TUA)	Türkiye	Zhuhai Orbita Aerospace Science & Technology	China
Turkish Technology Team Foundation	Türkiye		
TURKSAT	Türkiye		
TY-Space Technology (Beijing) Ltd.	China		
U.S. Geological Survey	United States		

5. Partner Organizations

5.1 International Academy of Astronautics (IAA)

Message from the International Academy of Astronautics (IAA)

For well over the past sixty years the International Academy of Astronautics, created at the outset of a new Space Age, has provided answers and solutions to the immense challenges that have faced the world community. This has made it a foremost centre of excellence in Astronautics, thanks to the concerted efforts of its dedicated members who developed its vision for the role of humankind in Space.

Aiming to mobilize the best talents from many fields of science and technology, the Academy has been most successful in developing a wide array of new activities to explore the unlimited possibilities of Space to improve the quality of life for people all over the world. Decades of continuous progress have been achieved through important international events such as the highly successful Summits in Washington DC and Mexico attended by 25 to 35 Heads of Space Agencies, as well as nearly 25 standalone IAA conferences in the world and 13 symposia each year at the International Astronautical Congress.

The International Academy of Astronautics (IAA) is pleased to invite you to attend the IAA Academy Day open meeting on Sunday and the various IAA symposia throughout the week. The Academy is organizing 13 symposia at next year's IAC in Antalya, Türkiye, representing about one third of the IAC technical program, and will co-host some interesting sessions with the IAF and the IISL. On the Academy Day, newly elected Academicians will be introduced and the major IAA Awards will be given.

Please join with us in advancing humankind's reach into the Space frontier!

John SCHUMACHER

President,
International Academy of Astronautics (IAA),
United States

The International Academy of Astronautics is a community of leading experts committed to expanding the frontiers of space, the newest realm of human activity. To foster the development of astronautics, the Academy undertakes several activities, including the recognition of outstanding contributors through elections and awards. It also facilitates professional communication, develops and promotes new ideas and initiatives, engages the public and fosters a sense of community among the members. The IAA is a unique independent non-governmental organization established in 1960 and recognized by the United Nations in 1996. It is an honorary society with an action agenda. With about 1200 elected members and corresponding members from 90 nations, the International Academy of Astronautics works closely with space agencies, industry, the academic community and the national science and engineering academies to determine needs and objectives and to help shape policy and forge cooperation by means of studies, position papers, conferences and publications. The IAA has published more than 90 studies to date and is engaged in the preparation of about 40 others. The Academy also publishes four book series, and its journal Acta Astronautica ranked 1st in the space area in the world and containing each year about 3500 refereed papers. In 2024 Acta Astronautica registered 1.7 million article's downloads. The Academy organizes about 25 conferences and regional meetings

per year focused on the development and promotion of all space activities and covering all continents including space developing countries. In addition, the Academy activity also includes, in cooperation with the International Astronautical Federation and the International Institute of Space Law, the traditional contribution to the International Astronautical Congress (IAC), where the Academy organizes 13 symposia. The Academy also continues to enjoy its participation in the COSPAR Assemblies and the International Society for Photogrammetry and Remote Sensing (ISPRS) congress. Although the IAA has many connections to these and other similar organizations, it is distinctive as the only International Academy of elected members in the broad area of astronautics and space.

International Academy of Astronautics (IAA)

Address: 6 rue Galilée, 75016 Paris Mailing address: P.O. Box 1268-16 – 75766 Paris Cedex 16 – France Phone: 33 (0)1 47 23 82 15 Email: sgeneral@iaamail.org Website: www.iaaspace.org

IAA Board of Trustees 2025-2026

PRESIDENT John SCHUMACHER **United States**

SECRETARY GENERAL Jean-Michel CONTANT France

PRESIDENT

John Schumacher (United States)

VICE-PRESIDENT SCIENTIFIC ACTIVITIES

Ralph McNutt Jr. (United States)

VICE-PRESIDENT PUBLICATIONS & COMMUNICATION

Marius-Ioan Piso (Romania)

VICE-PRESIDENT AWARDS & MEMBERSHIP

Chrysoula Kourtidou-Papadeli (Greece)

VICE-PRESIDENT FINANCE

Shigeki Kinai (Japan) **PAST-PRESIDENT**

Peter Jankowitsch (Austria)

SECRETARY GENERAL

Jean-Michel Contant (France)

LEGAL COUNSEL

Leslie Tennen (United States)

Trustees Section 1, Basic Sciences

Athena Coustenis (France, Chairman) Anil Bhardwaj (India)

Jan-Willem den Herder (The Netherlands) Masaki Fujimoto (Japan)

Rosaly Lopes (United States) Antonio Viviani (Italy)

Lev Zelenyi (Russian Federation)

Trustees Section 2, Engineering Sciences

Weimin Bao (China, Chairman) Jean-Marc Astorg (France)

Valery Aksamentov (United States) Junichiro Kawaguchi (Japan)

V. Narayanan (India) Giovanni Palmerini (Italy) **Thomas Schildknecht**

(Switzerland)

Trustees Section 3, Life Sciences

Elena Fomina (Russia, Chairman) Jeffrey Davis (United States)

Jichen Du (China) Nandu Goswami (Austria) Dumitru-Dorin Prunariu (Romania) Thais Russomano (Brazil)

Kazuhito Shimada (Japan)

Trustees Section 4, Social Sciences

Christopher Geiger (United States, Chairman)

Natalia Archinard (Switzerland) Miguel Bello-Mora (Spain)

Yang Hong (China) Rene Laufer (Germany)

Efim Malitikov (Russian Federation) Julie Payette (Canada)

5.2 International Institute of Space Law (IISL)

Message from the International Institute of Space Law (IISL)

On behalf of the International Institute of Space Law, it is my pleasure to invite you to our 69th Colloquium on the Law of Outer Space in Antalya, Türkiye. This year's Colloquium consists of seven exciting sessions that explore a range of highly relevant issues. Legal questions raised by current public and private space activities will be addressed and debated by the world's finest space lawyers, as well as students and young professionals. IISL also co-hosts its traditional joint session with the IAA: The 40th IAA-IISL 'Scientific Legal Roundtable,' providing an opportunity for lawyers, scientists, and engineers to address current developments in space in an interdisciplinary setting.

These are all issues, to which, we believe, IISL can and should contribute. No other Institution has this global inclusive reach and such a top-level experienced expert membership paired with bright young scholars, which guarantees relevant contributions and dialogue. The World Finals of the 36th Manfred Lachs Space Law Moot Court Competition take place in Antalya, welcoming all university students from Africa, the Asia Pacific, Europe, Latin America, and North America. We are proud and honoured that they will, as in the past, be judged by sitting members of the International Court of Justice. The IISL remains very proud to be an integral part of the International Astronautical Congress and its Technical Programme, furthering the discourse between disciplines so fundamental to our shared ways forward in this new era of the use of space. We look forward to welcoming you in Antalya!

Lesley Jane SMITH

President,
International Institute of Space Law (IISL),
United Kingdom/ Germany

Founded in 1960, the International Institute of Space Law (IISL) is an independent non-governmental organization dedicated to fostering the development of space law. The membership of the Institute is composed of individuals and institutions from more than fourty countries, elected on the basis of their contributions to the field of space law or other social sciences related to space activities. Additionally, prospective membership is open to students and young professionals with a demonstrated interest in space law.

Since 1992, the IISL has organized the annual Manfred Lachs Space Law Moot Court Competition. The competition is based on a hypothetical space law case, and is written by IISL members. Approximately sixty student teams from universities in Africa, the Asia Pacific, Europe, and North America participate. The competition is an important part of the organization 's outreach programme, and is its principal mechanism for engaging future generations of space law experts. The regional champions compete in the World Finals, which take place at the IAC and are judged each year by judges of the International Court of Justice. This unique feature makes the Manfred Lachs Moot Court one of the most prestigious moot court competitions in the world.

The IISL is an officially recognized observer at sessions of the United Nations Committee on the Peaceful Uses of Outer Space, and its Scientific & Technical and Legal Subcommittees. In cooperation with the European Centre for Space Law (ECSL), the IISL organizes an annual space law symposium for the delegates and staff attending the sessions of the UNCOPUOS Legal Subcommittee. In addition the Institute organizes a variety of conferences on space law throughout the year in locations all over the world. It publishes an annual volume of IISL Proceedings with papers and reports of all these activities during the year.

International Institute of Space Law (IISL)

Email: info@iislweb.org
Website: https://iislweb.space

IISL Board of Directors 2025 – 2026

PRESIDENT
Lesley Jane SMITH
United Kingdom/Germany

VICE PRESIDENT
Olavo BITTENCOURT
Brazil

TREASURER
Dennis J. BURNETT
United States

VICE PRESIDENT Ranjana KAUL India

EXECUTIVE SECRETARY P.J. BLOUNTUnited States

Members of the Board

Catherine Doldirina (Italy)
Frans G. von der Dunk (The Netherlands)
Andrea Harrington (United States)
Mahulena Hofmann (Czech Republic/Germany)
George Kyriapolous (Greece)
Martha Mejia-Kaiser (Mexico/Germany)
Antonino Salmieri (Italy)
Masahiko Sato (Japan)

Bernhard Schmidt-Tedd (Germany)
Olga Stelmakh-Drescher (Germany/Ukraine)
Jenni Tapio (Finland)
Fabio Tronchetti (Italy/China)
Helen Tung (Singapore)
Scarlet Wagner (Germany)
Guoyu Wang (China)
Yun Zhao (China)

5.3 Space Generation Advisory Council (SGAC)

Message from the Space Generation Advisory Council (SGAC)

The **Space Generation Congress (SGC)**, SGAC's flagship event, is eagerly anticipated by students and young professionals across the globe. More than just a gathering, SGC unites the next generation of space industry leaders, providing a dynamic platform for networking, sharing innovative ideas, and addressing the critical challenges shaping the global space landscape. The Congress fosters collaboration between emerging talent and seasoned experts, driving progress and innovation in the sector.

Whether you are a trusted sponsor, a long-standing SGAC member, or new to our community, SGC offers unparalleled opportunities to engage with the bright minds shaping the future of space. Moving beyond conventional conference formats, the event encourages interactive discussions, hands-on collaboration, and connections that last throughout your professional journey.

Taking place just before the **77**th International Astronautical Congress (IAC 2026) in Antalya, SGC sets the stage for the global dialogue that follows. We strongly encourage students and young professionals to submit abstracts for IAC 2026, a rare opportunity to showcase your ideas on a global stage, gain inspiration from leading experts, and actively contribute to the evolution of the space sector.

Participation in SGC not only enhances your IAC experience but also positions you at the heart of the space industry's future, providing insights, mentorship, and connections that will shape your career.

We look forward to welcoming you in Antalya.

Joshua CRITCHLEY-MARROWS

Chair,

Space Generation Advisory Council (SGAC)

Australia

Sapna RAO

Co-Chair,

Space Generation Advisory Council (SGAC)
United States

The Space Generation Advisory Council (SGAC), in support of the United Nations Programme on Space Applications, was established at UNISPACE III in 1999. As part of the Vienna Declaration, it was recommended "to create a council to support the United Nations Committee on the Peaceful Uses of Outer Space by raising awareness and exchanging fresh ideas from youth." The vision was to harness the creativity and energy of young people to advance humanity through the peaceful use of space.

Since its founding, SGAC has grown into the largest network for students and young professionals interested in space, representing over 35,000 members aged 18 to 35 from more than 165 countries. This network maintains active engagement with the United Nations, space agencies, industry, and academia. In 2025, SGAC continued to serve as an invaluable platform for channelling the passion and talent of its members, building new partnerships, and expanding membership and opportunities. As a global organization, SGAC hosted 3 global events, 17 regional and local events, and numerous online activities, including webinars, workshops, and research projects, keeping the community connected and engaged.

SGAC is proud to report that more than 170 scholarships were awarded to its global membership to attend key space events. Notably, SGAC organized the Space Generation Congress (SGC) alongside the International Astronautical Congress (IAC) in

Sydney, in coordination with the International Astronautical Federation (IAF). Our active participation in IAF committees and continued collaboration with the IAF remain central to SGAC's mission.

In line with strategic goals, SGAC plans to expand its presence in developing regions, increasing participation and activities worldwide. With the experience gained over the past year and a larger, stronger team, SGAC is optimistic for 2026, anticipating even greater engagement and connection with members and partners.

As we plan for the new year, we take this opportunity to recognize and celebrate the dedication and achievements of all SGAC members, reaffirming our mission as the leading international youth organization in space.

Space Generation Advisory Council (SGAC)

c/o European Space Policy Institute Schwarzenbergplatz 16 TOP1 1010 Vienna, Austria

Email: info@spacegeneration.org **Website:** https://spacegeneration.org/

SGAC Leadership

SGAC CHAIRS

Joshua CRITCHLEY-MARROWS

Chair,

Space Generation Advisory Council (SGAC),
Australia

Sapna ROA

Co-Chair,

Space Generation Advisory Council (SGAC),
United States

SGAC EX-OFFICIO

Nikol KOLEVA *Executive Director,*Space Generation Advisory Council (SGAC),
Bulgaria

Isi CASAS DEL VALLE P.

Business Development Officer,

Space Generation Advisory Council (SGAC),
Chile

Tatiana KOMORNÁOperations Officer,

Space Generation Advisory Council (SGAC),
Slovakia

Paulina VALLE

Continuous Improvement Officer,
Space Generation Advisory Council (SGAC),
Mexico

6. Message from the IAF Vice President for Technical Activities

Dear Colleagues,

On behalf of the International Programme Committee (IPC), we are pleased to invite you to submit an abstract for consideration for the 77th International Astronautical Congress (IAC 2026), taking place from 5 to 9 October 2026 in the beautiful and historic city of Antalya, Türkiye.

For the first time in its long and distinguished history, the IAC will be hosted in Türkiye - where East meets West, and ancient civilizations echo through time. We are proud to bring the global space community together in a location rich in heritage, innovation, and opportunity.

Organized by the International Astronautical Federation (IAF), IAC 2026 is hosted by the Turkish Space Agency (TUA) and co-hosted by SAHA Istanbul, with the valued support of the International Academy of Astronautics (IAA), the International Institute of Space Law (IISL), and the Space Generation Advisory Council (SGAC). Together, these organizations bring a diverse and vibrant range of perspectives to the Congress through dedicated symposia and events.

Under the inspiring theme, "The World Needs More Space," IAC 2026 invites scientists, engineers, entrepreneurs, policymakers, academics, and students to explore how space can help us build a more sustainable, inclusive, and innovative future. This theme extends beyond space exploration - it is a call to expand the frontiers of knowledge, opportunity, and collaboration.

We welcome **original and unpublished abstracts** for consideration. Submissions should not be under review or submitted to any other event. Abstracts must fall within one of the five main IAC categories:

- A. Science and Exploration
- **B.** Applications and Operations
- C. Technology
- D. Infrastructure
- E. Space and Society

Each category is overseen by dedicated **Category Coordinators**, alongside whom I have the pleasure to work in the IPC Steering Group. Their expertise helps ensure the scientific quality and coherence of the IAC Technical Programme.

Please note the following abstract guidelines:

- Written in English
- Maximum of 400 words
- No tables, graphs, or illustrations
- Submitted via the IAF online platform: https://iafastro.directory/iac/account/login/
- Deadline: 28 February 2026 (23:59 CET)

All abstracts will be reviewed by Session Chairs and evaluated on their technical merit and relevance to the selected session. Submissions may be selected for **oral presentations in Technical Sessions (TS)** or **Interactive Presentations (IP)**. Both presentation formats are equally valued, and papers will be included in the official Congress Proceedings, provided they are presented in person by the author in Antalya.

The final selection will be made by the IPC during the IAF Spring Meetings in March 2026 in Paris, France. Please note that alignment with the Congress theme will be considered a positive factor during the review process.

To ensure fairness and maintain the quality of the Technical Programme, each registered author will be allowed to present no more than two papers at IAC 2026, regardless of whether the presentations are oral or interactive. This rule applies across all sessions and must be considered during abstract submission.

We very much look forward to receiving your abstract submissions and to welcoming you to Antalya for what promises to be an unforgettable IAC 2026!

For updates on the Technical Programme and key deadlines, please visit the IAF website regularly and do not forget to subscribe to the IAF Newsletter.

Warm regards,

David SPENCER

IAF Vice President, Technical Activities and IAF Global Networking Forum,
International Astronautical Federation (IAF),
United States

7. Technical Category Coordinators

Category Coordinator A: Science and Exploration

Pierre W. BOUSQUET

Deputy of the Associate Director for
Exploration and Human Spaceflight,
Centre National d'Etudes Spatiales (CNES),
France

Category Coordinator B: Applications and Operations

Igor SOROKIN

Deputy Head of Space Stations Utilization Center,
S.P. Korolev Rocket and Space Corporation Energia,
Russian Federation

Category Coordinator C: Technology

John C. MANKINS

Vice President,

Moon Village Association (MVA),

Vice President,

ARTEMIS Innovation Management Solutions,
United States

Category Coordinator D: Infrastructure

Roberta MUGELLESI-DOW Integrated Applications Manager, European Space Agency (ESA), United Kingdom

Category Coordinator E: Space and Society

Pascale EHRENFREUND

IAF past President,
IAF Bureau,

President

President of Committee on Space Research (COSPAR),

Austria

8. IAC 2026 Technical Sessions and Interactive Presentation

Sessions

SCIENCE AND EXPLORATION

Systems sustaining missions, including life, microgravity, space exploration, space debris, astronomy and SETI

- IAF/IAA SPACE LIFE SCIENCES SYMPOSIUM **A1**
- **A2** IAF MICROGRAVITY SCIENCES AND PROCESSES SYMPOSIUM
- А3 IAF SPACE EXPLORATION SYMPOSIUM
- 55[™] IAA SYMPOSIUM ON THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) THE NEXT STEPS Α4
- Α5 29TH IAA SYMPOSIUM ON HUMAN EXPLORATION OF THE SOLAR SYSTEM
- 24TH IAA SYMPOSIUM ON SPACE DEBRIS **A6**
- IAF SYMPOSIUM ON ONGOING AND NEAR FUTURE SPACE ASTRONOMY AND SOLAR-SYSTEM SCIENCE MISSIONS **A7**

Category coordinated by Pierre W. Bousquet, Centre National d'Etudes Spatiales (CNES), France

IAF/IAA SPACE LIFE SCIENCES SYMPOSIUM

This symposium jointly organised by the International Academy of Astronautics (IAA) and the International Astronautical Federation (IAF) addresses all aspects of space life sciences research and practice in human and robotic spaceflight, from Low Earth Orbit (LEO) to the universe beyond, and from the Big Bang to the lives of future explorers on other planets

Alain Maillet Flena Fomina

MEDES - IMPS — FRANCE State Scientific Center of Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences -RUSSIAN FEDERATION

A1.1

Behaviour, Performance and Psychosocial Issues in Space

This session considers psychosocial, interpersonal, cultural, cognitive, sleep, circadian rhythm and human factors issues and countermeasures related to human spaceflight and space

Nick Kanas

Gro M. Sandal

University of California, San Francisco (UCSF) UNITED STATES

University of Bergen — NORWAY

A1.2

Human Physiology in Space

This session focuses on physiological effects of short- and long-duration spaceflight, and how this affects general health. Research into mitigation (countermeasures) of space effects are also included.

Flena Fomina

lens Jordan

State Scientific Center of Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences
— RUSSIAN FEDERATION Institute of Aerospace Medicine (DLR) — GERMANY

Rapporteur

Rapporteur Alain Maille

Angelique Van Ombergen

MEDES - IMPS — FRANCE

European Space Agency (ESA) — THE NETHERLANDS

A1.3

Medical Care for Humans in Space

This session focuses on medical care for astronauts including operational medicine aspects, countermeasure development and applications, as well as needs for future care for astronauts during long term, stays in space and missions to and on the Moon and Mars. A further focus will lie on medical care for passengers and operators of commercial suborbital and orbital space flights.

Satoshi Iwase Aichi Medical University — JAPAN Oleg Orlov

Katrin Stang

Institute of Biomedical Problems (IBMP), Russian Academy of Sciences (RAS) - RUSSIAN FEDERATION

Rapporteur Rapporteur

Hasan Birol Cotuk – TÜRKIYE

DLR (German Aerospace Center) — GERMANY

A1.4

Medicine in Space and Extreme Environments

Over the last decades numerous space missions and experiments have taken place. The use of microgravity as a tool to study new fundamentals of life revealed a substantial number of new scientific insights and surprises. Space is the most famous extreme environment but different extreme environments also exist on Earth, such as high altitudes, confined and isolated environments like Antarctica and Arctica or even submarines. Results from research in these environments can be successfully applied for the benefits of human beings both in space and on Earth. This session will cover the latest scientific results and technological achievements from medical-physiological or psychological research in extreme environments for the benefit on Earth.

Oleg Orlov

Institute of Biomedical Problems (IBMP), Russian Academy of Sciences (RAS) — RUSSIAN FEDERATION Hanns-Christian Gunga

Charité Universitätsmedizin Berlin — GERMANY

Jeffrey R. Davis

Exploring 4 Solutions — UNITED STATES

Rapporteur

Alexander Choukér

University of Munich — GERMANY

A1.5 Radiation Fields, Effects and Risks in Human Space Missions

The major topics of this session are the characterization of the radiation environment by theoretical modeling and experimental data, radiation effects on physical and biological systems, countermeasures to radiation and radiation risk assessment.

Co-Chairs

Rapporteur

Lawrence Pinsky

Guenther Reitz Premkumar Saganti Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) —

Prairie View A&M University — UNITED STATES

University of Houston — UNITED STATES

GERMANY

A1.6 **Advancements in Astrobiology and Space Exploration**

This session offers an insightful exploration of the latest advancements in astrobiology and space exploration. From ambitious human missions to the Moon and Mars to cutting-edge robotic exploration of Mars subsurface and ocean worlds like Europa, and Enceladus, this session covers all aspects of astrobiology. Therefore, this scientific gathering seeks to foster collaboration and knowledge exchange on extremophiles research, exobiology, biosignature detection, planetary protection, space exploration technology, and the quest to find evidence of habitability and life beyond our home planet.

Co-Chairs

Fathi Karouia

Stephan Ulamec

NASA Ames Research Center, Blue Marble Space Institute Of Science; BioServe Space Technologies University of Colorado Boulder — UNITED STATES Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) -

GERMANY

A1.7 Life Support, Habitats and EVA Systems

This session will address strategies, solutions and technologies in providing for human requirements during future deep space and planetary/lunar surface exploration.

Co-Chairs

Rapporteur

Gisela Detrell Technical University of Munich (TUM) — GERMANY

Lucie Poulet Université Clermont Auvergne (UCA) — FRANCE Hong Liu Xi'an Satellite Control Centre (XSCC) — CHINA

A1.8 **Biology in Space**

This session focuses on all aspects of biology and biological systems related to gravity in ground-based and space flight experiments as well as on topics not covered by other

sessions of this symposium.

Co-Chairs

Jancy C. McPhee

Rapporteur Marta Del Bianco

Didier Chaput Centre National d'Etudes Spatiales (CNES) — FRANCE

National Aeronautics and Space Administration (NASA),

Italian Space Agency (ASI) — ITALY

Johnson Space Center — UNITED STATES

A1.IP

Interactive Presentations - IAF/IAA SPACE LIFE SCIENCES SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Life Sciences addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific eight minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as; PowerPoint charts, embedded hot links, pictures, audio and video clips, etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Didier Chaput

Jancy C. McPhee

Centre National d'Etudes Spatiales (CNES) — FRANCE National Aeronautics and Space Administration (NASA),

Johnson Space Center — UNITED STATES

A2 IAF MICROGRAVITY SCIENCES AND PROCESSES SYMPOSIUM

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

The objective of the Microgravity Science and Processes Symposium, organized by the International Astronautical Federation (IAF), is to highlight and discuss the state of the art in microgravity (reduced-gravity) physical sciences and processes, as well as to prepare for future orbital infrastructure. Session topics cover all microgravity science disciplines (material science, fluid physics, combustion science, fundamental physics), current results and research perspectives, together with relevant technology developments.

Coordinator

– GERMANY

Coordinator

Coordinator

Angelika Diefenbach

Remi Canton

Centre National D'etudes Spatiales (CNES) — FRANCE

Qiu-Sheng Liu Institute of Mechanics, Chinese Academy of Sciences —

CHINA

A2.1 **Fundamental Physics in Low Gravity**

This session is devoted to low gravity and microgravity experiments addressing research in fundamental physics. Focus areas include quantum physics, soft matter and general

relativity...

Co-Chairs Thomas Driebe

Vladimir Pletser

DLR (German Aerospace Center) — GERMANY Blue Abyss — UNITED KINGDOM

A2.2 The main focus of the session is on perspective research fields in fluid and materials sciences, multi-phase and chemically reacting flows including theoretical modeling, numerical

Fluid and Materials Sciences

Co-Chairs

Nickolay N. Smirnov Qi Kang

simulations, and results of pathfinder laboratory and space experiments.

National Microaravity Laboratory, Institute of Mechanics. Lomonosov Moscow State University — RUSSIAN **FEDERATION** Chinese Academy of Sciences — CHINA

A2.3 Microgravity Experiments from Sub-Orbital to Orbital Platforms Science

This session presents recent results of microgravity experiments from all disciplines using different microgravity platforms, including drop towers, parabolic aircrafts, sounding

rockets and capsules.

Co-Chairs

Raffaele Savino

Rapporteur Vladimir Pletser

University of Naples "Federico II" — ITALY

University of Mondragon - SPAIN

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) —

Blue Abyss — UNITED KINGDOM

A2.4 Microgravity Experiments on board of Suborbital Platforms and Space Stations

This session is focused on the results of ground based preparatory experiments from all disciplines in physical sciences.

Valentina Shevtsova

Antonio Viviani Università degli Studi della Campania "Luigi Vanvitelli"

- ITALY

Rainer Willnecker

Rapporteur

Nickolav N. Smirnov

Lomonosov Moscow State University — RUSSIAN

FEDERATION

A2.5 **Facilities and Operations of Microgravity Experiments**

This session is devoted to new diagnosis developments, the design and definition of new instruments and space platforms, and the concepts for future ground and flight operation (telescience, robotics, hardware & software).

Qiu-Sheng Liu Remi Canton

Institute of Mechanics, Chinese Academy of Sciences Centre National d'Etudes Spatiales (CNES) — FRANCE

– CHINA

A2.6 Microgravity Sciences on board of Space stations

This session focusses on the presentation of scientific and operational results obtained from microgravity sciences research conducted on large orbital platforms, in particular the ISS, the Chinese Space Station (CSS) and upcoming commercial space stations. Papers on planned or newly developed research topics and experiment scenarios are also invited. The session comprises the preparation scenarios for further long-term flight opportunities beyond low Earth orbits such as the Deep Space Gateway station.

Angelika Diefenbach Thomas Driebe MengYun Chen

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Technology and Engineering Center for Space Utilization, DLR (German Aerospace Center) — GERMANY — GERMANY ${\it Chinese\ Academy\ of\ Sciences-CHINA}$

A2.7 Life and Physical Sciences under reduced Gravity

This session focusses on the presentation of scientific and operational results obtained from life and physical sciences research conducted on large orbital platforms, in particular the ISS, the Chinese Space Station (CSS) and upcoming commercial space stations. Papers on planned or newly developed research topics and experiment scenarios are also invited. The session comprises the preparation scenarios for further long-term flight opportunities beyond low Earth orbits such as the Deep Space Gateway station.

Rapporteur Angelika Diefenbach Peter Graef Remi Canton Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
— GERMANY Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) — GERMANYCentre National d'Etudes Spatiales (CNES) — FRANCE

A2.8 **In-Space Manufacturing and Production Applications**

In-Space Manufacturing and Production Applications leverage microgravity, vacuum, and orbital environments to unlock pathways in biomedicine, advanced materials, and autonomous production that are impractical on Earth. This session convenes practitioners advancing: bioprocessing (cell and tissue expansion, organoid and disease models, protein crystallization, biologics and nucleic-acid manufacturing); materials (defect-suppressed alloys, ultra-low-loss optical fibers, semiconductor epitaxy, glass/ceramic processing); and production architectures (additive and hybrid manufacturing, in-space assembly, robotic autonomy, digital twins, in-process metrology, and closed-loop resource use). Emphasis is placed on flight-demonstrated results, scaling from parabolic and ISS/pathfinder missions to commercial platforms, and on standards, certification, biosafety, and traceability needed for quality and repeatability. The session aims to share methods, lessons learned, and roadmaps that reduce risk and cost, enable interoperability across platforms, and build resilient supply chains. By integrating biology, materials science, automation, and operations, the community will translate microgravity advantages into reliable production capabilities that accelerate exploration and deliver high-value products for terrestrial markets.

Fathi Karouia David Estrada Albert Houcine Touati

Boise State University (BSU) — UNITED STATES NASA Ames Research Center, Blue Marble Space Institute Of Science; BioServe Space Technologies University of Colorado Boulder — UNITED STATES

Université Clermont Auverane (UCA) - FRANCE

Rapporteur

A2.IP Interactive Presentations - IAF MICROGRAVITY SCIENCES AND PROCESSES SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Microgravity Sciences and Processes addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Rapporteur Angelika Diefenbach Remi Canton Oiu-Sheng Liu Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Centre National d'Etudes Spatiales (CNES) — FRANCE Institute of Mechanics, Chinese Academy of Sciences — - GERMANY

IAF SPACE EXPLORATION SYMPOSIUM **A3**

This symposium, organized by the International Astronautical Federation (IAF), covers the current and future robotic missions and material plans for initiatives in the exploration of the Solar System.

Coordinators

Pierre W. Bousquet Maria Antonietta Perino

Centre National d'Etudes Spatiales (CNES) — FRANCE National Aeronautics and Space Administration (NASA), Jet Thales Alenia Space Italia — ITALY Propulsion Laboratory — UNITED STATES

A3.1 **Space Exploration Overview**

This Session covers Space Exploration strategies and architectures, as well as technology roadmaps. Papers of both national and international perspectives are invited, as are

papers dealing with the emerging area of commercial space exploration activities.

Co-Chairs Rapporteur

Kevur Patel Norbert Frischauf **Dmitry Zarubin**

Space Research Institute (IKI), Russian Academy of Sciences (RAS) — RUSSIAN FEDERATION National Aeronautics and Space Administration TU Graz – AUSTRIA (NASA), Jet Propulsion Laboratory — UNITED STATES

Rapporteurs

Norbert Frischauf TU Graz – AUSTRIA

A3.2A Moon Exploration - Part 1

This session will address current and future lunar missions. The session will address orbital missions, robotic surface missions, as well as life sciences on the Moon, resource

utilisation and preparatory activities for future solar system exploration.

Rapporteur

Nadeem Ghafoor

Bernard Foing
ILEWG "EuroMoonMars" — THE NETHERLANDS **David Korsmeyer** National Aeronautics and Space Administration (NASA), Avalon Space — CANADA Ames Research Center — UNITED STATES

A3.2B Moon Exploration - Part 2

This session will address current and future lunar missions. The session will address orbital missions, robotic surface missions, as well as life sciences on the Moon, resource

utilisation and preparatory activities for future solar system exploration.

Rapporteur Nadeem Ghafoor

Bernard Foing
ILEWG "EuroMoonMars" — THE NETHERLANDS

David Korsmeyer National Aeronautics and Space Administration (NASA).

Avalon Space — CANADA

Ames Research Center — UNITED STATES

A3.2C

Moon Exploration – Part 3 This session will address current and future lunar missions. The session will address orbital missions, robotic surface missions, as well as life sciences on the Moon, resource utilisation and preparatory activities for future solar system exploration.

Co-Chairs

Bernard Foing

ILEWG "FuroMoonMars" — THE NETHERLANDS National Aeronautics and Space Administration (NASA).

Ames Research Center — UNITED STATES

Rapporteurs

Sylvie Espinasse

Nadeem Ghafoor

European Space Agency (ESA) — THE NETHERLANDS Avalon Space — CANADA

A3.3A Mars Exploration - Missions Current and Future

The planet Mars is being explored now and in the coming years with multiple robotic missions from a variety of nations. This session will cover current results from ongoing Mars

missions and the designs for proposed Mars missions.

Vincenzo Giorgio Thales Alenia Space Italia — ITALY Pierre W. Bousquet

Centre National d'Etudes Spatiales (CNES) — FRANCE

Rapporteurs

Cheryl L.B. Reed

Lisa May

Northrop Grumman Corporation — UNITED STATES — UNITED STATES

A3.3B Mars Exploration - Science, Instruments and Technologies

The planet Mars is being explored now and in the coming years with multiple robotic missions from a variety of nations. This session will cover science, instruments and technologies for Mars missions including expected experiments. Papers on any aspects of the search for evidence or extinct Martian life, and forward and backward contamination

are particularly welcome.

Co-Chairs

Vincenzo Giorgio Thales Alenia Space Italia — ITALY Pierre W. Bousquet

Centre National d'Etudes Spatiales (CNES) — FRANCE

Rapporteurs

Cheryl Reed

Northrop Grumman Innovation Systems — UNITED STATES

Lisa May
— UNITED STATES

A3.4A

Small Bodies Missions and Technologies (Part 1) This session will present the missions and technological aspects related to the exploration of small bodies including a search for pre-biotic signatures.

Stephan Ulamec

Cheryl Reed

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) - GERMANY

Northrop Grumman Innovation Systems — UNITED STATES

Rapporteurs

Norbert Frischauf

Shana Diez

TU Graz — AUSTRIA

SpaceX — UNITED STATES

A3.4B Small Bodies Missions and Technologies (Part 2)

This session will present the missions and technological aspects related to the exploration of small bodies including a search for pre-biotic signatures.

Co-Chairs

Stephan Ulamec

Cheryl Reed

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) – GERMANY

Northrop Grumman Innovation Systems — UNITED STATES

Rapporteurs

Norbert Frischauf

Shana Diez

TU Graz — AUSTRIA SpaceX — UNITED STATES

A3.5 **Solar System Exploration including Ocean Worlds**

This session covers robotic missions for Solar System exploration (inner and outer planets and their satellites, and space plasma physics) except the Earth, Moon, Mars, and small bodies covered in other sessions of this symposium. Special emphasis on papers addressing missions to so-called Ocean Worlds (Enceladus, Europa, Titan) is sought. Papers covering both new mission concepts as well as the associated specific technologies are invited.

Co-Chairs

Mariella Graziano GMV Aerospace & Defence SAU — SPAIN Junichiro Kawaguchi

Australian National University (ANU) — AUSTRALIA

Rapporteurs

Charles E. Cockrell Jr — UNITED STATES

Gabriel Pont

Centre National d'Etudes Spatiales (CNES) — FRANCE

A3.IP Interactive Presentations - IAF SPACE EXPLORATION SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Exploration addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Christian Sallaberger

Bernard Foing

Canadensys Aerospace Corporation — CANADA

Berkeley SETI Research Center — UNITED STATES

ILEWG "EuroMoonMars" — THE NETHERLANDS

A4 55TH IAA SYMPOSIUM ON THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) – THE NEXT STEPS

Organised by the International Academy of Astronautics (IAA), this symposium brings together scientists, engineers, and thinkers from across the globe to tackle one of humanity's most profound questions: Are we alone in the universe? The Search for Extra-Terrestrial Intelligence (SETI) combines cutting-edge science and technology with deep interdisciplinary inquiry. Researchers are combing through huge astronomical datasets for anomalies — "technosignatures" — that could point to the presence of advanced civilisations in our Galaxy and beyond. This search spans the entire electromagnetic spectrum and employs some of the world's most powerful telescopes, alongside innovative technologies such as artificial intelligence, to uncover subtle signals that might otherwise be missed. But SETI is more than a technical quest. It challenges us to consider the social and cultural implications of detection: What is best practice in conducting the search? How would humanity respond? What might it mean for our art, language, education, laws, politics, media, and even our psychology? From risk communication to public outreach, the symposium draws on a rich tapestry of disciplines to explore the profound impact of discovering we are not alone.

Coordinators

Andrew Siemion

Michael Albert Garrett

University of Manchester — UNITED KINGDOM

A4.1 SETI 1: SETI Science and Technology: Current and Future Directions

This session examines the scientific and technical foundations of the Search for Extra Terrestrial Intelligence (SETI), focusing on how we design, execute, and refine strategies to detect evidence of other technological civilisations. Researchers are analysing huge astronomical datasets for technosignatures — from narrowband radio signals to unusual infrared or optical anomalies — across the entire electromagnetic spectrum. Increasingly, multi messenger approaches (e.g. gravitational waves, neutrinos etc) are also being applied to broaden the search. We aim to highlight developments in observational techniques, next generation instrumentation, and new search strategies, including the use of artificial intelligence to mine complex datasets for subtle anomalies. The session welcomes contributions on current and future projects, emerging technologies, and creative approaches that will shape the next generation of SETI research.

Co-Chairs

Karen Perez

SETI Institute -- UNITED STATES

David DeBoer

Oxford University — UNITED KINGDOM

A4.2 SETI and Society: Exploring the Human Dimension

This session addresses the interdisciplinary aspects of the Search for Extra Terrestrial Intelligence (SETI), focusing on the profound social and cultural consequences of detecting a signal from another intelligent civilisation. Such a discovery would ripple through every aspect of human life, raising questions not only for scientists but for policymakers, educators, politicians, artists, and the public at large. We invite contributions exploring how different disciplines - from anthropology, sociology, psychology, and law to politics, media studies, education, and the arts — can help us understand and prepare for this momentous event. Topics include best practice for managing the search, engagement with the public and media, risk communication, and the institutional and ethical frameworks needed to guide our response. This session provides a forum for building a truly global, inclusive dialogue on how humanity might navigate first contact - intellectually, culturally, and practically.

Co-Chair

Lori Walton

Paolo Musso

 ${\it InCosmiCon Research Center-Italy}$

A4.IP Interactive Presentations - 55TH AA SYMPOSIUM ON THE SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) – The Next Steps

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of SETI addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Andrew Siemion

Michael Albert Garrett

Berkeley SETI Research Center — UNITED STATES

University of Manchester — UNITED KINGDOM

A5 29TH IAA SYMPOSIUM ON HUMAN EXPLORATION OF THE SOLAR SYSTEM

This symposium, organized by the International Academy of Astronautics (IAA), covers the strategic plans, architectural concepts and technology development for future human exploration of the Moon, Mars, Lagrangian Points and NEO's.

Coordinators

Christian Sallaberger

Maria Antonietta Perino

Canadensys Aerospace Corporation — CANADA

Thales Alenia Space Italia — ITALY

A5.1 Human Exploration of the Moon and Cislunar Space

This session will examine the scenarios and infrastructure required to support human exploration of the Moon and Cislunar space. Papers are invited to discuss technology roadmaps as well as interfaces to allow international cooperation.

Co-Chairs

Nadeem Ghafoor

Greg Chavers

Avalon Space — CANADA

NASA — UNITED STATES

Rapporteurs

Marc Haese

Henrik Petersson

DLR, German Aerospace Center — GERMANY Swedish Space Corporation (SSC) — SWEDEN

A5.2 Human Exploration of Mars

This session will examine the scenarios and infrastructure required to support human exploration of Mars and the moons of Mars. Papers are invited to discuss technology roadmaps as well as interfaces to allow international cooperation.

Co-Chairs

Rapporte

Maria Antonietta Perino
Thales Alenia Space Italia — ITALY

Kathy LauriniOsare Space Consulting Group — UNITED STATES

Norbert Frischauf TU Graz – AUSTRIA

A5.3 B3.6

A5.4

Human and Robotic Partnerships in Exploration - Joint session of the IAF Human Spaceflight and IAF Exploration Symposia

This session seeks papers on new systems and technologies for current human spaceflight and exploration programmes, and the role of human and robotic partnerships in areas such as onboard robotic assistants, habitat / infrastructure construction support, human mobility support systems (e.g. EVA mobility aids, rovers); and robotic precursor activities to human spaceflights for test, validation, and demonstration of systems. This session also welcomes papers considering how the roles of humans, machines and intelligent systems are likely to evolve in the coming years and the corresponding impact on complex mission design, implementation, and operations.

Co-Chairs

Pierre-Alexis Joumel Mark Hempsell

Airbus Defence and Space — GERMANY The British Interplanetary Society — UNITED KINGDOM

Rapporteurs

Juergen Schlutz Scott Ritter

Deep Space Habitats and Resources

European Space Agency (ESA) — GERMANY International Space University (ISU) — FRANCE

This session will focus on the habitability aspects for Moon and Mars outposts and bases and to sustain human deep space exploration missions and the needed resources, exploring technical solutions like greenhouses, plant-growth in space, harvesting water from the Moon and Mars regolith.

Co-Chairs

Anna Barbara Imhof Maria Antonietta Perino ${\it Liquifer Systems Group (LSG)-AUSTRIA}$ Thales Alenia Space Italia — ITALY

Rapporteurs

Sandra Haeuplik-Meusburger Olga Bannova

Technische Universität Wien (TU Wien) — AUSTRIA University of Houston — UNITED STATES

A5.IP Interactive Presentations - 29TH IAA SYMPOSIUM ON HUMAN EXPLORATION OF THE SOLAR SYSTEM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Human Exploration of the Solar System addressed in the Technical Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Christian SallabergerCanadensys Aerospace Corporation — CANADA Maria Antonietta Perino Thales Alenia Space Italia — ITALY

24TH IAA SYMPOSIUM ON SPACE DEBRIS Α6

The Symposium will address the complete spectrum of issues associated to space debris, including orbital sustainability and operations in debris dominated environment It will cover every aspect of Space Environment Management (SEM) including Mitigation and Remediation measures, Space Surveillance and Tracking (SST), Space Situational Awareness (SSA), Space Traffic Management (STM), including all aspects of measurements, modelling, risk assessment in space and on the ground, re-entry, hypervelocity impacts and protection, mitigation and standards, post-mission disposal, remediation, debris removal, Space Surveillance, collision avoidance as well as non-technical topics associated to space debris dominated environment such as space ethics.

Coordinators

Mark A. Skinner Noelia Sanchez Ortiz The Aerospace Corporation — UNITED STATES Arribes Enlightenment - SPAIN

Space Debris Measurements and Orbit Determination SST (1) A6.1

This session will address all aspects related to the measurement of space objects and orbit determination. It will cover both ground-based and space-based techniques, as well as methods for identification and characterization of objects. Special attention will be given to data processing, orbit accuracy, and strategies to improve coverage and reliability of surveillance and tracking networks.

Co-Chairs Rapporteur

Thomas Schildknecht Mark A. Skinner **Dmitriy Grishko** SwissSpace Association — SWITZERLAND The Aerospace Corporation — UNITED STATES Bauman Moscow State Technical University — RUSSIAN FEDERATION

A6.2 **Resident Space Objects Characterisation and High Velocity Impacts**

This session will focus on the detailed characterization of resident space objects (RSO), including small debris and angular motion determination through estimation, simulation, and experimentation. It will also explore phenomena associated with high-velocity impacts, protection and shielding tests, and fragmentation simulations, with the objective of evaluating risks and effects on operational spacecraft

Co-Chairs Rapporteur

Satomi Kawamoto Yukihito Kitazawa Japan Aerospace Exploration Agency (JAXA) — JAPAN Beijing Institute of Spacecraft Environment Engineering, Japan Aerospace Exploration Agency (JAXA) — JAPAN China Academy of Space Technology (CAST) — CHINA

A6.3 **Environment Modelling and Risk Assessment**

This session will cover the modelling of the space debris environment and the assessment of associated risks. Topics will include collision risk analyses, estimations based on population models and deterministic catalogues, as well as studies on the reconstruction of break-up and fragmentation events. The session will also address validation of models through observations and laboratory experiments, aiming to improve the prediction of orbital environment evolution. It will also examine methods for assessing orbital capacity and congestion, including indicators for orbital slot usage, and impact of allocation strategies on population dynamics. The combined perspective of environmental modelling and capacity management provides a comprehensive view of the long-term sustainability of the orbital environment.

Rapporteur Dan Oltrogge Carmen Pardini Camilla Colombo COMSPOC Corp. — UNITED STATES ISTI-CNR - ITALY Politecnico di Milano — ITALY

A6.4 Operations in Congested Space: Situational Awareness and Space Traffic Management - SSA

This session will examine operations within the framework of Space Situational Awareness (SSA) and Space Traffic Management (STM). It will address strategies and systems for enhancing satellite operational safety, artificial intelligence applications in SSA, collision avoidance manoeuvres, and coordination of operations in large LEO constellations (LLC). Emphasis will be placed on data integration and international cooperation to ensure the safe management of the orbital environment.

Darren McKnight **Vincent Martinot Andrew Monham** EUMETSAT — GERMANY Thales Alenia Space France — FRANCE LeoLabs — UNITED STATES

A6.5 Post Mission Disposal and Space Debris Removal – SEM

This session will focus on space debris mitigation and remediation strategies, including Post-Mission Disposal (PMD) and Active Debris Removal (ADR) techniques and technologies (both ground and space-based). A particular focus will be given to in-orbit demonstration missions, ADR mission design and analysis, and rendezvous and proximity operations incorporating GNC and robotics aspects. The goal is to assess the feasibility, safety, and efficiency of these solutions to reduce on-orbit risks.

Co-Chairs

Christophe Bonnal Jason Forshaw Roberto Opromolla MaiaSpace — FRANCE University of Naples "Federico II" — ITALY Astroscale Ltd — UNITED KINGDOM

A6.6 **Orbit Propagation and Mitigation Assessment**

This session will address the study of orbital dynamics of space objects, the development of propagation techniques, and long-term environment simulations, including aspects related with space ethics. It will assess the effectiveness of various mitigation measures and evaluate the impacts of different population evolution scenarios. Outcomes will support the definition of guidelines for sustainable management of Earth orbits.

Tim Flohrer Jan Siminski Marlon Sorge The Aerospace Corporation — UNITED STATES European Space Agency (ESA) — GERMANY European Space Agency (ESA) — GERMANY

A6.7 Re-entry Modelling and Interaction with Atmosphere

This session will discuss atmospheric re-entry modelling and its interaction with the atmosphere. It will cover prediction and safety aspects, analysis of atmospheric break-up processes (both mechanical and thermal), and experimental testing. The session will also consider the environmental impact of re-entry, including pollution and potential effects on aviation safety. Advances in models and prediction tools will be presented.

Rapporteur

Ysolde Prevereaud
ONERA - The French Aerospace Lab — FRANCE Stijn Lemmens Pierre Omaly European Space Agency (ESA) — THE NETHERLANDS Astroscale France SAS — FRANCE

Policy, Legal, Institutional, Economic and Security Aspects of Debris Mitigation, Debris Remediation and STM A6.8

This session will address all non-technical aspects of debris mitigation, debris remediation and STM. Papers may focus on aspects of responsibility, liability and registration, on the role of bodies such as UNCOPUOS or IADC, as well as on insurance, financial incentives and funding. In addition, security-related aspects and the role of international cooperation in addressing these issues may be considered.

Co-Chairs

E9.1

Serge Plattard Tanja Masson-Zwaan The Aerospace Corporation — UNITED STATES University College London (UCL) — UNITED KINGDOM International Institute of Air and Space Law, Leiden

University — THE NETHERLANDS

Rapporteur Rapporteur Victoria Samson Emma Kerr Andrea Capurso

LUISS Guido Carli University — ITALY Secure World Foundation — UNITED STATES Defence Science and Technology Laboratory (DSTL) — UNITED KINGDOM

Space Debris Measurements and Orbit Determination SST (2) A6.9

This session will address all aspects related to the measurement of space objects and orbit determination. It will cover both ground-based and space-based techniques, as well as methods for identification and characterization of objects. Special attention will be given to data processing, orbit accuracy, and strategies to improve coverage and reliability of surveillance and tracking networks. The session expands the scope of A6.1.

Co-Chairs

Fabrizio Piergentili Juan Carlos Dolado Perez

Sapienza University of Rome — ITALY Centre National d'Etudes Spatiales (CNES) — FRANCE

A6.10 Joint Small Satellite/Space Debris Session on Small Satellite Operations for the Sustainability of Space

This session facilitates bilateral discussions between Small Satellite and Space Debris communities for shared understanding of the challenges/issues and to promote practical small B4.10 satellite solutions for the long-term sustainability of space. It will include topics such as, but not limited to:

Small satellite constellations operations, sustainability, post-mission disposal and de-orbiting
 Small-satellite missions: Lessons learned in the LEOP phase and in small satellite identification in early operational phase

- Debris risk mitigation and Space Traffic Management technologies for small satellites and constellation - Small satellites for Post Mission Disposal, In-orbit servicing and support to sustainability actions and Space Traffic Management

- Capacity and slotting for small satellite constellations
- Lessons learned from sustainability and debris mitigation actions for small satellite missions and constellations

- Active Debris Removal missions and rendezvous and docking missions.

- Small satellite technology related to space sustainability

- Best practice in implementing sustainability on very small spacecraft.

Rapporteur

Norman Fitz-Coy Paolo Marzioli **Philip Davies**

Surrey Satellite Technology Ltd (SSTL) — UNITED Sapienza University of Rome — ITALY UNIVERSITY OF FLORIDA — UNITED STATES KINGDOM

Interactive Presentations - 24TH IAA SYMPOSIUM ON SPACE DEBRIS A6.IP

> This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Debris addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Melissa Zemoura Centre National d'Etudes Spatiales (CNES) — FRANCE

Emma Kerr

Defence Science and Technology Laboratory (DSTL) —

UNITED KINGDOM

Rapporteur

Paolo Marzioli

Roberto Opromolla University of Naples "Federico II" - ITALY Sapienza University of Rome - ITALY

Α7 IAF SYMPOSIUM ON ONGOING AND NEAR FUTURE SPACE ASTRONOMY AND SOLAR-SYSTEM SCIENCE MISSIONS

The symposium, organized by the International Astronautical Federation (IAF), invites leaders from the science, space industry, and space-agencies community to share information, insights, and planning for ongoing and near future space missions in exoplanets, astronomy, space physics, fundamental physics, and outer-solar-system planetary science. The Symposium will comprise both invited talks and contributed papers in these five areas of scientific endeavour. For each, the Symposium solicits discussion of phenomena coming within our reach over the next decades; their enabling measurement and system technologies, including significant progress made by industry and research laboratories; mission concepts to implement such investigations, and corporate and space agency strategies to prioritize and invest in bringing them into reality.

Coordinators

Andrew Court TNO — THE NETHERLANDS Alessandra Di Cecco Agenzia Spaziale Italiana (ASI) — ITALY **Gustavo Medina Tanco** Universidad Nacional Autónoma de México (UNAM) —

Italian Space Agency (ASI) — ITALY

MEXICO

A7.1 Space Astronomy Missions, Strategies and Plans

The session comprises invited talks by international space-agency division directors about their long-term views, priorities, and plans to implement developments and missions for the four fields (exoplanets, space astronomy, space physics and fundamental physics). The mission scope ranges from flagship-class, large-class, medium-class, and small-class to smallsat platforms. The programme scope includes status updates on current programmes, near-term investment priorities, and long-range directions, including the relationship to community and guiding research panels.

Rapporteur

Eric Wille Alessandra Di Cecco **Andrew Court**

ESA — THE NETHERLANDS TNO — THE NETHERLANDS Agenzia Spaziale Italiana (ASI) — ITALY

A7.2 Science Goals and Drivers for Future Exoplanet, Space Astronomy and Space Physics

The session has invited and contributed talks about scientific motivations, goals, opportunities, and needs in the four fields (exoplanets, space astronomy, space physics, and fundamental physics). New directions for measurements that are being opened by emergent results and newly understood phenomena will be explored, and science roadmaps to pursue them will be discussed.

Pietro Ubertini Maria Cristina Falvella Alessandra Di Cecco INAF - ITALY Italian Space Agency (ASI) — ITALY Agenzia Spaziale Italiana (ASI) — ITALY

Δ7.3 Technology Needs for Future Missions, Systems, and Instruments

The session includes invited and contributed talks about the technology challenges and plans required to enable breakthrough science objectives in: exoplanet detection and characterization; astronomy throughout the electromagnetic spectrum and using gravitational waves; space physics including fractional gravity regimes and heliophysics; and fundamental physics including relativity. Topical focus includes measurement techniques, data types, performance requirements, instrument designs, mission concepts and systems, and associated technology developments.

Co-Chairs Rapporteur Eric Wille Maria Cristina Falvella **Andrew Court** ESA — THE NETHERLANDS $TNO-THE\ NETHERLANDS$

A7.4 Lunar astrophysics: scientific instrumentation and ancillary systems

The return to the Moon will mark human society. A proof of the global interest is that already Artemis has reached 56 signatories, while ILRSCO already counts 12 signatories. Grand science can be both a beneficiary and a business model enabling the lunar economy. The symposium, in accord with the stated mission of the SATC, recognizes the importance of the Moon as a unique platform for astrophysical research in several domains, e.g.: (a) high-sensitivity observations of low-frequency radio waves, facilitating studies of the early universe, cosmic dawn, and galactic magnetic fields, (b) optical and infrared large interferometer arrays supporting exoplanet detection, stellar evolution studies, and galaxy formation research, (c) gravitational wave detection through lunar-based interferometers, impacting research on binary mergers and cosmic events, (d) large cosmic ray observatories enabling the direct measurement of the primary component of the flux. Such experiments need extensive infrastructure and face considerable technological, engineering and logistical challenges which require the tight cooperation between industry and scientists. The symposium will provide a space for the identification of both the scientific challenges, and the technologies which must be developed by industry to meet them, promoting the discussion among scientific and industrial actors as well as decision makers.

Co-Chairs Rapporteur **Gustavo Medina Tanco** Pietro Ubertini **Andrew Court**

TNO — THE NETHERLANDS Universidad Nacional Autónoma de México (UNAM) INAF - ITALY

Interactive Presentations - IAF SYMPOSIUM ON FUTURE SPACE ASTRONOMY AND SPACE PHYSICS

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Astronomy addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the A Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts

Co-Chairs

Alessandra Di Cecco Andrew Court TNO — THE NETHERLANDS Agenzia Spaziale Italiana (ASI) — ITALY

A7.IP

APPLICATIONS AND OPERATIONS

On-going and future operational applications, including Earth observation, communication, navigation, human space endeavours and small satellites

В1 IAF EARTH OBSERVATION SYMPOSIUM

B2 IAF SPACE COMMUNICATIONS AND NAVIGATION SYMPOSIUM

В3 IAF HUMAN SPACEFLIGHT SYMPOSIUM

В4 33RD IAA SYMPOSIUM ON SMALL SATELLITE MISSIONS

IAF SYMPOSIUM ON INTEGRATED APPLICATIONS **B5**

IAF SPACE OPERATIONS SYMPOSIUM **B6**

Category coordinated by Igor V. Sorokin, S.P. Korolev Rocket and Space Corporation Energia, RUSSIAN FEDERATION

B1 IAF EARTH OBSERVATION SYMPOSIUM

The Earth Observation Symposium, organized by the International Astronautical Federation (IAF), covers all aspects of Earth observations from space, including observations related to the Earth's environment, services to meet societal needs, and economic benefit. Aspects include programs, constellations, missions, and systems; microwave and optical sensors; land, oceanographic, atmospheric, geological, geophysical, societal, security, economic, and business domains; the associated science, ground data-processing, applications, and services; through all life cycle phases from research and technology through, planning, conceptualization, development, commissioning, operations, retirement and historical retrospective. Participation is encouraged from all sectors including institutional (including Government, Agencies, multi-lateral, non-Governmental, Academic) and Commercial.

Coordinators

Luís Ferreira Annamaria Nassisi **Shimrit Maman** Airbus Defence and Space — GERMANY Thales Alenia Space Italia — ITALY Ben-Gurion University of the Negev - ISRAEL

R1 1 International Ventures in Earth Observations

This session focuses in Earth Observation missions designed for international markets and applications, with emphasis on the role of international cooperation in achieving mission objectives. Contributions are welcome from governmental and agency programs, public-private partnerships, commercial initiatives, and academic or non-governmental organizations. Submissions are encouraged on the management, organizational, programmatic, and business-model aspects of cooperation. Presentations should share plans, status, and experiences—including challenges and risks—in organizing and managing international ventures. Case studies are particularly welcome where collaboration advances societal needs such as climate change mitigation, Earth system health, capacity building in emerging space nations, entrepreneurial and commercial growth, governmental policy, disaster response, media services, and security. The session also seeks insights on innovation and lessons learned in planning, governance, and management practices leading to successful outcomes. Areas of interest include: Space-based Earth Observation missions (single missions, constellations, and sustained programs), Systems (instruments, spacecraft, communications, data processing, archiving, distribution, and calibration/validation), Applications (value-added products and services benefiting society, business, and scientific or technological advancement). Papers with technical focus should be submitted to B1.2.

Kyriaki Minoglou European Space Agency (ESA) — THE NETHERLANDS

Cristian Bank *EUMETSAT — GERMANY*

Rapporteurs

Mukund Kadursrinivas Rao José Gavira Izquierdo

International Space Consultant — THE NETHERLANDS

B1.2 **Earth Observation Systems**

Independent consultant — INDIA

Focus is on innovative and new concept system solutions for Earth observations and how well they perform to meet user / mission objectives. Functional and technical description are encouraged. Papers covering all phases of the life cycle are requested including for systems envisioned, planned, recently launched, ongoing, and historical for single spacecraft missions and constellations, and for all categories of purposes including for scientific research, experimental demonstration, and operational / commercial Earth observation. All sources of missions are sought including governmental / agency programs, public / private partnerships, commercial, academic / non-governmental / non-commercial. Desired papers convey design features, technical performance, status of technical execution (concept study, concept design, preliminary design, detailed design, development, operations, retirement, historical), and technical challenges of the associated program, and highlighting unique / unprecedented features and the technical value they provide. Papers with a $management \ / \ organization \ / \ programmatic \ / \ business \ model \ / \ cooperation \ focus \ should \ be \ submitted \ to \ B1.1$

Co-Chairs

Annamaria Nassisi Timo Stuffler

Thales Alenia Space Italia — ITALY OHB System AG - GERMANY

Rapporteurs

Doris Klein Erick Lansard

Satellite Research Center, Nanyang Technological University DLR (German Aerospace Center) - GERMANY

(NTU) — SINGAPORE, REPUBLIC OF

B1.3 **Earth Observation Sensors and Technology**

First focus is on Earth Observation sensors and instruments including future concepts being proposed, developed, tested, or calibrated, and those in operations for all aspects of Earth observation. Driven by user and scientific requirements, particular emphasis is on instrument systems that make innovative measurements and deliver improved performance for science, operational or commercial applications. Second focus is on technologies for instruments, spacecraft and missions which enable innovation and advancement in sensor observations performance and capability. Capability advancement could be in coverage, resolution, onboard features such as processing, autonomy, adjustability/ adaptability, user commanding, or other technology that provides or is intended to provide improved utility to targeted and other users

Co-Chairs

Andrew Court

Oana van der Togt Netherlands Aerospace Centre (NLR) — THE TNO — THE NETHERLANDS

NETHERLANDS

Rapporteurs

Camilo Andres Reyes Jeffrey Apeldoorn ICEYE — FINLAND

B1.4 **Earth Observation Data Systems and Technology**

The focus is on the development and operations of Earth Observation-related data processing systems. The emphasis of the session is on the challenges of emerging information and web-based technology (e.g. Big Data, Cloud-based operations, internet of things, crowd sourcing) for acquisition, communication, processing, dissemination and archiving of data. The session also covers innovative methods for making data analysis ready, the extraction of information from these resulting large data sets (e.g. Machine learning and artificial intelligence) and methods for making the information available timely to decision makers. This session also includes the evolving data processing infrastructure like federated Cloud systems and digital twin.

Rapporteur

Ana-Mia Louw James Graf Agnieszka Lukaszczyk Jet Propulsion Laboratory — UNITED STATES Andart Global — POLAND

B1.5 Earth Observation Societal and Economic Applications, Challenges and Benefits

The focus of the session is on generating information and delivering applications and services using Earth Observations data for meeting sustainable development challenges, addressing socio-economic benefits, and delivering commercial services, Presentation of analyses, methods, algorithms, processors, case studies and results from developing and operating applications and services (e.g., including consideration of investment cost, economic return, and societal benefits, especially leveraging innovative approaches), are encouraged. Optimized application satellite constellations, that emphasize the socio-economic aspects of these collective systems rather than focusing on individual techniques or single satellites are also encouraged

Michael Kern Qian Xuesen Laboratory of Space Technology, China

Academy of Space Technology (CAST) — CHINA

ESA — FRANCE

Rapporteurs

Masami Onoda Luís Ferreira

Japan Aerospace Exploration Agency (JAXA) — Airbus Defence and Space — GERMANY LINITED STATES

B1.6 The Future of Maritime Protection: An Integrated View on Earth Observation, Advanced Systems, and Policy

This session offers a comprehensive and forward-looking view on the topic of maritime protection, leveraging the latest advancements in Earth Observation (EO) technologies, space-based data, policy and applications. This session will encompass a combination of preventive measures, policy perspectives, and sophisticated monitoring technologies vital for safeguarding coasts and oceans. Throughout the session, industry experts will present the capabilities of next-generation EQ, highlighting how the integration of advanced data analytics and intelligent systems is enabling new and effective solutions. The discussion will cover the latest innovations used to: i) Prevent pollution incidents and support a rapid response; ii) Monitor marine biodiversity and delicate ecosystems; iii) Enhance safety and rescue operations at sea; iv) Improve monitoring and surveillance against various coastal threats, v) manage fisheries, marine reserves and mammal populations. The session will also delve into the international regulations and policies that govern the use of EO data, promoting a framework for the responsible and sustainable management of marine resources and protecting both economic and environmental interests. This integrated approach—from technology and systems to policy and applications—provides a complete picture of the evolving landscape for a secure maritime future

Co-Chairs

Krystal Azelton Secure World Foundation — UNITED STATES **Mariel Borowitz** - UNITED STATES Chen Xiaoli

Beijing Institute of Space Mechanics & Electricity, China Academy of Space Technology (CAST) - CHINA

Chen Xiaoli Beijing Institute of Space Mechanics & Electricity, China Academy of Space Technology (CAST) — CHINA

Alexandra Jercaianu Nara Space — KOREA, REPUBLIC OF

B1.7 Earth Observations to address Earth's Environment and Climate Challenges

The IPCC reports on climate change articulate the major global environmental challenges that require vast and sustained measurement and information systems to monitor key climate parameters and inform decision makers and enable potential mitigations. Global governmental agencies, commercial and public/private partnerships are investing in creating systems and applications for environmental monitoring and prediction, and climate monitoring and change mitigation. This session focuses on the latest major findings in climate research and the systems being used to address the climate challenges, Earth Observations science, weather, oceanography, and land monitoring. Presentation of algorithms, processing chains and services especially leveraging innovative approaches, are encouraged. Optimized application satellite constellations, which do not focus on individual techniques or single satellites and describe the environmental / climate aspects of these collective systems, are also encouraged.

Co-Chairs

Ole Morten Olsen Patrick Castillan

Norwegian Space Agency (NOSA) - NORWAY ${\it Centre \ National \ d'Etudes \ Spatiales \ (CNES)-FRANCE}$

Shimrit Tirosh Maman ${\it Israel Space Agency-ISRAEL}$ Harry A. Cikanek National Oceanic and Atmospheric Administration (NOAA)

- UNITED STATES

B1.IP Interactive Presentations - IAF EARTH OBSERVATION SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Earth Observation addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten-minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the B Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Oana van der Togt

Harry A. Cikanek

Bernard Foing

Netherlands Aerospace Centre (NLR) — THE National Oceanic and Atmospheric Administration (NOAA) — UNITED STATES NETHERLANDS

ILEWG "EuroMoonMars" — THE NETHERLANDS

National Aeronautics and Space Administration

(NASA), Jet Propulsion Laboratory — UNITED STATESY

Masami Onoda Japan Aerospace Exploration Agency (JAXA) — UNITED

STATES

IAF SPACE COMMUNICATIONS AND NAVIGATION SYMPOSIUM **B2**

This symposium, organized by the International Astronautical Federation (IAF), examines developments in space-based systems, services, applications, and technologies as they relate to communication and navigation. Communication topics include fixed, broadcast, high-throughput, mobile, optical, and quantum communications. Navigation topics include position, velocity, and time determination and tracking for both relative and inertial reference frames. The symposium addresses geostationary, non-geostationary, and extraterrestrial systems and constellations. The topics of IoT and M2M as they relate to communication and navigation are also applicable to this symposium.

Coordinators

Laszlo Bacsardi

Hungarian Astronautical Society (MANT) — HUNGARY

Morio Toyoshima

National Institute of Information and Communications

Technology (NICT) — JAPAN

Space-based PNT (Position, Navigation, Timing) Architectures, Applications, and Services B2.1

This session is focused on advances in space-based navigation systems, including the existing global systems (Beidou, Galileo, GLONASS, GPS) and regional systems (EGNOS, IRNSS, QZSS, WAAS), as well as proposed and emerging new space-based systems. The session also addresses advances in the services and applications of those systems for position, velocity, and time determination and tracking, and integrity assurance on Earth, Moon, and potentially other bodies of the solar system.

Co-Chairs

Giovanni B. Palmerini

Raj Thilak Rajan

Sapienza University of Rome — ITALY Delft University of Technology (TU Delft) - THE NETHERLANDS

Rapporteurs

Rania Toukebri Space Generation Advisory Council (SGAC) — Stephanie Wan

ICEYE - UNITED STATES

B2.2 Space-based PNT (Position, Navigation, Timing) Sensors and Systems

This session is focused on advances in technology applicable to space-based navigation systems. Technologies include hardware or software necessary for the entire navigation system (spacecraft, monitor and control system, end-user equipment) for GNSS and alternative navigation satellite architectures (such as LEO constellations), ground and space-based navigation user equipment, sensor fusion algorithms, frequency and time transfer standards, crosslink ranging, precise orbit & satellite clock error determination, etc. Technologies should be applicable to position, velocity, and time determination and tracking, and integrity assurance on Earth, Moon, and other off-Earth platforms.

Co-Chairs

Sanat K Biswas IIIT Delhi — INDIA Peter Buist

European Union Agency for the Space Programme (EUSPA) — THE NETHERLANDS

Rapporteurs

University of New South Wales - AUSTRALIA

Rania Toukebri

Space Generation Advisory Council (SGAC) — GERMANY

R23 Advance Higher Throughput Communications and Networks for GEO and LEO satellites

This session is focused on advanced higher throughput communications and networks for LEO constellations, GEO, MEO and Molnya to improve performances (increased capacity, low latency and reduced cost) including all aspects of space communications and networks, services, architecture and infrastructure: fixed, mobile and broadcast services; High-Throughput Satellite (HTS); Very-High Throughput Satellites (VHTS); Ultra-High Throughput Satellite (SDS); inter-satellite link technologies; 5G integration into satellite networks; multiple access; Ku- and Ka-band, Q/V/W/E bands and higher frequencies; optical communications for HTS; VSAT/ESIM and broadcasting/radio/ television and internet services, including video to users; and Artificial Intelligence (AI)/Machine Learning (ML) related technologies.

Co-Chairs

Norbert Frischauf Hoda Awny

TU Graz — AUSTRIA Egyptian Space Agency (EgSA) — EGYPT

Co-Chairs

Debra Emmons Otto Koudelka

The Aerospace Corporation — UNITED STATES Graz University of Technology (TU Graz) — AUSTRIA

B2.4 **Space-based Optical and Quantum Communications**

This session is focused on optical and quantum communications in space including all aspects of space-based optical and quantum communications: in-orbit, on-ground demonstrations and results; present and future scenarios; next generation systems and applications; terrestrial-based systems; small satellites; ranging technology with optical communications; imaging technology for optical communications; optical devices; optoelectronic subsystems and components; laboratory demonstration hardware; atmospheric propagation and modeling, transmission effects; compensation techniques; site-diversity techniques; modulation formats; trade-offs between optical and microwave (RF) systems; Quantum Key Distribution (QKD); advances in quantum communications; quantum internet; and atomic clocks.

Laszlo Bacsardi **Kevin Shortt**

 ${\it Hungarian Astronautical Society (MANT)-HUNGARY}$ Airbus Defence & Space — GERMANY

Nader Alagha Christopher Vasko

ESA — THE NETHERLANDSY European Space Agency (ESA) — THE NETHERLANDS

B2.5 Extra-Terrestrial and Interplanetary Communications, and Regulations

This session focuses on near-Earth, deep-space and extra-terrestrial communications with particular emphasis on unique concepts, techniques and technologies including all aspects of space communications, services, architecture and infrastructure: ARTEMIS related missions; Earth orbiting, lunar, and planetary missions; flight and ground demonstrations and results; present and future scenarios; next generation systems and applications; science missions; terrestrial-based systems; small satellites; near-Earth and planet observation satellites. It also includes spectrum interferences, spectrum allocations and regulations issues, and impacts of Space Debris and optical pollution to satellite communications for new systems/services, systems modeling; and review/survey papers.

Co-Chairs

Dipak Srinivasan

The Johns Hopkins University Applied Physics

Retired NASA — UNITED STATES

Ramon P. De Paula

Laboratory — UNITED STATES

Sara AlMaeeni **Dunay Badirkhanov**

Mohammed Bin Rashid Space Centre (MBRSC) — Azercosmos, Space Agency of Republic of Azerbaijan —

UNITED ARAB EMIRATES AZERBAIJAN

B2.6 **Cubesat, Internet of Things, and Mobile Direct Communications**

This session is focused on small satellite, IoT and mobile communication services that can communicate directly with 3GPP mobile phone terminals including all aspects of space communications, services, architecture and infrastructure: Narrow Band (NB)-IoT, 3GPP IoT terminals; LoRa IoT terminals; Low Power Wide Area (LPWA); Non-Terrestrial Network (NTN); cube-, pico-, nano-, micro-satellites; High Altitude Platform Station (HAPS); aircraft control; in-orbit, on-ground demonstrations and results; present and future scenarios; next generation systems and applications; terrestrial-based systems; small satellites; Earth observation satellites; devices; subsystems and components; laboratory demonstration hardware; site-diversity techniques; modulation formats. Both terrestrial and satellite networks will be available at the same terminal, and coverage is expected to expand significantly.

Co-Chair

Dehra Emmons Giuseppe D'Amore

The Aerospace Corporation — UNITED STATES Agenzia Spaziale Italiana (ASI) — ITALY

Co-Chair

Enrique Pacheco Cabrera

International Academy of Astronautics — MEXICO National Institute of Information and Communications

Technology (NICT) — JAPAN

B2.7 **Advances in Space-based Network and Communication Technologies**

This session is focused on all aspects of advanced spacecraft and Earth station communications technologies for space-based communications, as applied to both existing and future systems. It addresses technologies ranging from those used in nano satellites to those applicable to large, high throughput satellites. It covers – among others communications subsystem design, modulation and coding, propagation, power amplifiers, digital payload technologies including onboard processing and adaptive transmit technologies, antennas including phased array, plasma and microstrip patch antenna array design, and all other technology relevant to space communications.

Co-Chairs

Enrique Pacheco Cabrera Eva Fernandez Rodriguez

International Academy of Astronautics — MEXICO Netherlands Organisation for Applied Scientific Research (TNO) — SPAIN

Rapporteurs

Elemer Bertenyi Steven Shumsky

Canadian Aeronautics and Space Institute — CANADA Millennium Space Systems, A Boeing Company — UNITED

STATES

B2.8 Space Communications and Navigation Global Technical Session

This is a hybrid (virtual and in person) session that targets a global audience where developments in a wide range of satellite communication and space-based PNT (position, navigation, timing) topics are presented and discussed. Communication topics include fixed, mobile, broadcasting, and data relay technologies and services. Space-based PNT topics include sensors, systems, architectures, applications, and services. Topics ranging from Earth orbit to interplanetary space can be addressed. Authors are welcome to either present their work in person at the conference or remotely via the IAF's online platform. This session offers authors the unique opportunity to directly engage an audience beyond just the on-site attendees and is co-sponsored by the Space Communications and Navigation Committee and the Workforce Development/Young Professionals Programme Committee

Co-Chairs

GTS.3

Eric Wille Joshua Critchley-Marrows ESA — THE NETHERLANDS ArkEdge Space Inc. - AUSTRALIA

Manish Saxena Behnoosh Meskoob

École de technologie supérieure — CANADA Indian Space Research Organization (ISRO) — INDIA

R2 IP

В3

Interactive Presentations - IAF SPACE COMMUNICATIONS AND NAVIGATION SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Communications and Navigation addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten-minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the B Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Laszlo Bacsardi Hungarian Astronautical Society (MANT) — Morio Toyoshima

National Institute of Information and Communications

Technology (NICT) — JAPAN

HUNGARY Rapporteurs

Vera Pinto Gomes

Manish Saxena

Furopean Commission — BELGIUM Indian Space Research Organization (ISRO) - INDIA

The symposium, organized by the International Astronautical Federation (IAF), invites papers on all aspects of on-going and planned human spaceflight including the design, development, operations, utilization and future plans of space missions involving humans. The scope covers past, present and planned space missions and programmes in sub-orbital, low Earth orbit (LEO) and beyond Earth orbit (BEO), both governmental and private. The Human Spaceflight Symposium will also feature discussions on preparations for the launch of new human spaceflight capabilities and collaborative efforts of human and robotic systems and technologies.

Coordinators

Kevin D. Foley The Boeing Company — UNITED STATES

Sam Scimemi

National Aeronautics and Space Administration (NASA) —

Alex Karl Space Applications Services — BELGIUM

UNITED STATES

Kayya Manyapu

Space Generation Advisory Council (SGAC) — UNITED STATES

IAF HUMAN SPACEFLIGHT SYMPOSIUM

B3.1 Governmental Human Spaceflight Programmes (Overview)

The session provides the forum for updates and annual "Overview" presentations on present and evolving governmental Human Spaceflight programmes. Each year, the session will focus on specific themes dealing with human spaceflight exploration. These will be selected by the session chairs based on the received abstracts. The session will accept manuscripts from any organization (agencies, industries, research centers, academia, etc.) dealing with international, Governmental human space programmes initiatives. The range of topic to be addressed in this session include mission to low Earth orbit (LEO) and those beyond Earth orbit (BEO) and include orbital systems, crew and cargo transportation systems, as well as surface systems and operations on the Moon. The format of the session (e.g. panel, pitching presentations, keynote speech) will be a result of such a selection.

Co-Chairs

Rapporteur

Robyn Gatens National Aeronautics and Space Administration (NASA)

Juergen Schlutz European Space Agency (ESA) — GERMANY Antonio Fortunato European Space Agency (ESA) — GERMANY

B3.2 **Commercial Human Spaceflight Programmes**

This session provides a forum for technical papers describing commercial human spaceflight applications in low Earth orbit (LEO) and beyond Earth orbit (BEO) inclusive of orbital, lunar, deep space and sub-orbital endeavours. Topics on international orbital space stations, the International Space Station, human-tended space station platforms, commercial transportation systems, cis-lunar space, lunar surface operations as well as deep space exploration will be recognized. Areas of focus may include the architecture of commercial human spaceflight systems, commercial operations and utilization projects, commercial crew and cargo transportation, habitation, logistics systems, mobility, data and communication services. Other topics appropriate for this session include new technology, applications and capabilities in areas such as artificial intelligence, food and nutrition, health and medical, in-space manufacturing, in-situ resource utilization, robotics and automation, sustainability as well as market and economic development activity for human spaceflight in low Earth orbit (LEO) or beyond Earth orbit (BEO).

Rapporteur

Kevin D. Foley

The Boeing Company — UNITED STATES

Michael E. Lopex Alegria MLA Space, LLC — UNITED STATES Sergey K. Shaevich

Khrunichev State Research & Production Space Center — RUSSIAN FEDERATION

B3.3 Advancements in Human Space Habitation for Orbital, Transit, and Surface Environments

This session features papers that highlight the latest advancements in human space habitation systems, covering orbital, transit, and planetary surface applications. Technical papers will present innovative technological advancements and architectural strategies that are crucial for ensuring the safety, sustainability, and well-being of crews during extended missions beyond Earth. Topics include achievements, technologies, design concepts, and future prospects for crewed and crew-tended space habitats, emphasizing all aspects of their utilization. Additionally, discussions will cover terrestrial-based test and analog facilities pivotal in advancing the development of future space habitation outposts.

Co-Chairs

Eleanor Morgan Lockheed Martin Space Systems — UNITED STATES Kavya K. Manyapu NASA — UNITED STATES Thomas A.E. Andersen

Danish Aerospace Company A/S — DENMARK

B3.4 Flight & Ground Operations aspects of Human Spaceflight - Joint Session of the IAF Human Spaceflight and IAF Space Operations B6.4 Symposia

This session addresses systems, advanced concepts, key challenges and their solutions related to flight and ground operations within governmental and commercial human spaceflight. Topics include among others; cutting-edge operational tools, solutions, efficient cost reduction measures, improved operational ground facilities or infrastructure, enhanced logistics concepts as well as new approaches for mission planning, ground transportation, and sustainment for sub-orbital, LEO and BEO.

Dieter Sabath Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) **Annamaria Piras**

Thales Alenia Space Italia — ITALY

— GERMANY

Jérôme Campan

Maria Grulich

European Space Agency (ESA) — GERMANY TELESPAZIO GERMANY GMBH - GERMANY

B3.5

Astronaut Training, Accommodation, and Operations in Space This session begins with an Astronaut Roundtable where an international group of astronauts from the various programmes will discuss their experiences in a roundtable format. There will be an extended Question and Answer period of interaction with the audience. This session concentrates on all aspects of spaceflight that are unique to the presence of astronauts. It encompasses astronaut activities such as selection, training, workload management, and task division between flight and ground segments. It includes spacecraft systems and robotic tools; interfaces; international command, control and communications; payloads; research; and utilization. It addresses the unique spacecraft systems required to safely accommodate astronauts during intravehicular and extravehicular activities. The session includes astronaut pre-mission, mission, and post-mission support of technological and scientific space-based research and utilization of human space complexes and the space environment for sub-orbital, LEO and BEO missions.

Rapporteur Co-Chairs

Alan T. DeLuna Andrea Boyd Igor V. Sorokin

S.P. Korolev Rocket and Space Corporation American Astronautical Society (AAS) — UNITED STATES European Space Agency (ESA) — GERMANY Energia — RUSSIAN FEDERATION

B3.6 A5.3

Human and Robotic Partnerships in Exploration - Joint session of the IAF Human Spaceflight and IAF Exploration Symposia

This session seeks papers on new systems and technologies for current human spaceflight and exploration programmes, and the role of human and robotic partnerships in areas such as onboard robotic assistants, habitat / infrastructure construction support, human mobility support systems (e.g. EVA mobility aids, rovers); and robotic precursor activities to human spaceflights for test, validation, and demonstration of systems. This session also welcomes papers considering how the roles of humans, machines and intelligent systems are likely to evolve in the coming years and the corresponding impact on complex mission design, implementation, and operations.

Co-Chairs Rapporteurs

Mark Hempsell Ian Marius Bach Scott Ritter

The British Interplanetary Society — UNITED DLR (German Aerospace Center) — GERMANY International Space University (ISU) — FRANCE

B3.7 Advanced Systems, Technologies, and Innovations for Human Spaceflight

This session is designed to examine and identify the potential evolution of key elements of Human Spaceflight missions for sub-orbital, LEO and BEO, especially those driven by advanced technologies and innovations. Papers are solicited that address potential future subsystems, technologies, innovations, logistics, processes, procedures, etc. Papers are also encouraged that address key factors in enabling innovation and new system insertion in human space flight, including reliability, availability, first time use, learning by doing, early testing and integration results, and prototyping. Topics which enable or significantly improve future human space mission objectives are of interest including for exploration, commercial initiatives, tourism, and industrial undertakings. Also, lessons learned from past missions and their application to future missions are essential topics in this session.

Mauro Augelli Sébastien Barde Gi-Hyuk Choi ${\it UK\,Space\,Agency-UNITED\,KINGDOM}$ Centre National d'Etudes Spatiales (CNES) — FRANCE Korean Aerospace Research Institute - KOREA, REPUBLIC

B3.8 **Human Space & Exploration**

This session addresses current and future missions, applications and preparatory plans for human lunar and planetary exploration activities. The session covers human exploration of the Moon including its surface and cislunar space as well as Mars missions. Papers that delve into the programmatic and technical aspects of these activities are encouraged. Both national and international perspectives are invited as are emerging areas of commercial human exploration activities.

Co-Chairs Rapporteur

Dan King Joost van Tooren Joao Lousada

MDA Corporation – CANADA ALATYR — FRANCE GMV GmbH — GERMANY

B3.9 **Human Spaceflight Global Technical Session**

The Human Space Endeavours Global Technical Session is targeting individuals and organizations with the objective of sharing best practices, future projects, research and issues for the future of Human Space Endeavours for sub-orbital, LEO and BEO. This is a Global session co-sponsored by the Human Space Endeavours Committee and the Workforce GTS.2 Development/Young Professionals Programme Committee

Co-Chairs Rapporteur

Guillaume Girard Andrea Jaime Joao Lousada

Zero2infinity — SPAIN Isar Aerospace Technologies GmbH — GERMANY GMV Aerospace & Defence SAU — GERMANY

B3.IP Interactive Presentations - IAF HUMAN SPACEFLIGHT SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Human Spaceflight addressed in the classic Sessions. The presentation will be displayed on digital screens in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the B Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Peter Batenburg Matei Poliacek

Netherlands Space Society (NVR) — THE NETHERLANDS DLR (German Aerospace Center) — SLOVAK REPUBLIC

В4 33RD IAA SYMPOSIUM ON SMALL SATELLITE MISSIONS

> The International Academy of Astronautics (IAA) Symposium on Small Satellite Missions is focused on recent advances in small satellite class missions weighing much less than 1000kg, addressing needs in government, commerce, or academia. Papers should focus on how microsatellites, nanosatellites, CubeSats and small and "megaconstellations" amongst others enable valuable results for the mission end-user. Papers should benefit the wider smallsat community, and demonstrate a degree of ingenuity and innovation in small satellite utilization, design, manufacture and/or engineering. Papers can report on important lessons-learned, describe notable missions in the planning stages, or include topics that demonstrate the value of small satellites and their constellations, their applications. Sessions cover the role that small satellites can play in developing space nations, science, exploration, "NewSpace", communications and Earth Observation. Sessions also cover cost-effective operations, affordable and reliable access to space through launch, and emerging and promising smallsat technologies and techniques.

Coordinators

Alex da Silva Curiel

Surrey Satellite Technology Ltd (SSTL) — Delft University of Technology (TU Delft) - THE NETHERLANDS

B4.1 27TH Workshop on Small Satellite Programmes at the Service of Developing Countries

This workshop is organized jointly by the United Nations Office for Outer Space Affairs (UNOOSA) and the International Academy of Astronautics (IAA). It shall review the needs that could be satisfied and results achieved by developing nations through using small satellites. National space plans and examples of application results and benefits shall be included. Small satellite programmes in Africa, Middle-East, and Central Asia would be of particular interest to the session. The workshop shall also review the results of internation cooperation, technology transfer, lessons learned and the extent to which these efforts have contributed to the space maturity of developing countries.

Co-Chairs

Sias Mostert Nathalie Ricard

Space Commercial Services Holdings (Pty) Ltd United Nations Office for Outer Space Affairs — AUSTRIA SOUTH AFRICA

Rapporteurs

Danielle Wood Taiwo Raphael Teiumola

 ${\it University of Southampton-UNITED\ KINGDOM}$ Massachusetts Institute of Technology (MIT) —

UNITED STATES

R4.2 Small Space Science Missions

This session will address the current and near-term approved small/micro/nano missions whose objective is to achieve returns in the fields of Earth science, solar, interplanetary, planetary, astronomy/astrophysics observations, and fundamental physics. Emphasis will be given to results achieved, new technologies and concepts, and novel management techniques.

Co-Chairs

Oana van der Togt

Larry Paxton The Johns Hopkins University Applied Physics Laboratory — UNITED STATES

Netherlands Aerospace Centre (NLR) — THE NETHERLANDS

Roberta Mugellesi-Dow

Rapporteur

European Space Agency (ESA) — UNITED KINGDOM

B4.3

Small Satellite Operations

This session covers the planning for, and execution of, cost-effective approaches for Small Satellite Operations, with emphasis on new missions, including constellations of small satellites, with new models of operation to reduce mission lifecycle costs and to minimize the cost impact of mission extensions. Papers addressing innovation, an entrepreneurial approach to new business opportunities, novel finance and business models, management techniques, and international cooperation in support of Small Satellite Operations are particularly encouraged. Papers that discuss the application of novel technology to mission operations, such as automation and autonomy, constraint resolution, and timeline planning, as well as reports on missions recently accomplished and lessons learned, are also welcome. For papers not addressing small satellites, please refer to Symposium B6.

Nijin Jose Thykkathu **Andreas Hornig**

Science and Technology Facilities Council — UNITED KINGDOM AerospaceResearch.net-- GERMANY

Rapporteurs

Lynette Tan Stephan Roemer Space Faculty - SINGAPORE, REPUBLIC OF OHB - GERMANY

B4.4 Small Earth Observation Missions

We call for papers that will present information to decision makers, scientists, engineers, and managers about cost-effective small satellite missions, instruments, technologies and designs of both current and planned Earth and near-Earth missions. This session addresses the technologies, applications and missions achieved through the use of small, cost-effective satellites to observe the Earth and near-Earth space. Innovative cost-effective solutions to the needs of the science and applications communities are sought. Satellite technologies suited for use on small satellites including those in the single to multiple CubeSat ranges are particularly encouraged. Satellite or technology development efforts that make use of innovative launch opportunities, such as the developing space tourism market and commercial launch capability, hold significant promise for low-cost access to space make Earth observation missions attainable to non-governmental organizations as well as traditional users: papers addressing these evolving opportunities would be welcomed.

Co-Chairs

Carsten Tobehn **Larry Paxton**

European Space Agency (ESA) — THE NETHERLANDS The Johns Hopkins University Applied Physics Laboratory —

UNITED STATES

Rapporteurs

Marco Gomez Jenkins **Eugene D Kim**

Satrec Initiative — KOREA, REPUBLIC OF UNITED KINGDOM

B4.5 **Access to Space for Small Satellite Missions**

A key challenge facing the viability and growth of the small satellite community is affordable and reliable space access. Topics of interest for this session include the utilization of dedicated launches; development of ride-share systems, auxiliary payload systems, and separation and dispenser systems; and responsive integration approaches that will enable efficient small satellite access to space. Includes lessons learned from users on technical and programmatic approaches. For a dedicated discussion of small satellite propulsion systems, please refer to session B4.5A-C4.8. For a discussion of small launchers concepts and operations, please refer to session D2.7.

Yves Gerard Philip Davies

Airbus Defence & Space — FRANCE Surrey Satellite Technology Ltd (SSTL) — UNITED KINGDOM

Rapporteurs

Jeffrey Michlitsch Carlos Niederstrasser

The Aerospace Corporation — UNITED STATES Northrop Grumman Corporation — UNITED STATES

B4.5A C4.8

Joint Session between IAA and IAF for Small Satellite Propulsion Systems

This session will pay particular attention to propulsion systems and associated technologies as an enabler to efficient small satellite access to space and orbit change. Papers are invited discussing the particular challenges of design, manufacture, testing, operations and technological developments of small satellite propulsion systems, and the challenges of obtaining high performance within a small volume and mass. The scope includes chemical and electric propulsion systems for major orbit changes, fine orbit control and maintenance, and end-of-life disposal. This session will be accepting submissions for oral presentations only.

For papers with an emphasis on the small satellite and its system design, refer to other B4 sessions. For a focus on other propulsion systems and technologies, refer to other C4

sessions

Jeff Emdee **Arnau Pons Lorente**

The Aerospace Corporation — UNITED STATES Space Generation Advisory Council (SGAC)

- UNITED STATES

Rapporteurs

Ulrich Gotzig Elena Toson

Space Generation Advisory Council (SGAC) — ITALY ArianeGroup — GERMANY

B4.6A

Generic Technologies for Small Satellites (1)

This session, together with session B4.6B, covers emerging and promising generic technologies for small satellites, including platform and payload technologies. Real-life examples are particularly encouraged, both recently launched and shortly to be launched (next 3 years).

Co-Chairs

Philip Davies Joost Elstak

Surrey Satellite Technology Ltd (SSTL) — UNITED ICEYE — THE NETHERLANDS KINGDOM

Thomas Terzibaschian

Delft University of Technology (TU Delft) — THE Astro- und Feinwerktechnik Adlershof GmbH - GERMANY

B4.6B Generic Technologies for Small Satellites (2)

This session, together with session B4.6A, covers emerging and promising generic technologies for small satellites, including platform and payload technologies Real-life examples are particularly encouraged, both recently launched and shortly to be launched (next 3 years).

Co-Chairs

 Andy Vick
 Martin von der Ohe

 RAL Space — UNITED KINGDOM
 Lacuna Space — GERMANY

Rapporteurs

Zeger de Groot Paolo Marzioli

B4.7 Constellations and Distributed Systems

Small satellites offer important advantages in creating new opportunities for implementing spatially-distributed space-based systems (e.g. Constellations). In this session we focus on new, emerging, or enabling technologies that can be used or are being used to create networked data collection systems via small satellites. Specifically, Session B4.7 focuses on Constellations (e.g. Constellation missions for Earth Observation, IoT/M2M and LEO Communications), distributed architectures (e.g. Distributed SAR systems) and sensor systems and how these low-cost and rapidly delivered technologies offer the potential to fulfill complex user needs, working in coordination with other small or large space infrastructures (e.g. mega-constellations), as well as with airborne or terrestrial assets. Papers should show how cross-platform compatibility (both hardware and software aspects) can be used to enable these systems, any standards that are proposed or adopted, design techniques that enable this cross-platform compatibility, etc. We are particularly interested in technologies that enable small spacecraft to play an important role in upcoming applications, such as (but not limited to) civil security, telecommunications in remote areas, navigation support (e.g., along the new foreseen routes in the Arctic), natural disaster management (e.g., damage assessment and first responders support), and planetary exploration. In this regard, the development and usage of Commercial-off-the-shelf (COTS) technologies are also of specific interest to the session. Distributed systems and their impact in terms of new opportunities for the emerging Commercial-off-the-shelf (COTS) technologies are also of specific interest to the session. Distributed systems are covered in Synthesia and their impact in terms of new opportunities for the emerging Commercial-Space Industry and new commercial-space missions with small platforms is also of specific interest to the session. The integrated applications of these sensor systems are covered in Synth

Co-Chairs

Rainer Sandau Michele Grassi

International Academy of Astronautics (IAA) — University of Naples "Federico II" — ITALY GERMANY

Rapporteurs

Jaime Esper Maria Daniela Graziano Klaus Schilling

National Aeronautics and Space Administration (NASA) University of Naples "Federico II" — ITALY University Wuerzburg — GERMANY

— UNITED STATES

B4.8 Small Spacecraft for Deep-Space Exploration

This session focuses on innovative small spacecraft designs, systems, missions and technologies for the exploration and commercialization of space beyond Earth orbit. Target destinations for these miniaturized space probes include the Earth's Moon, Mars, comets and asteroids, as well as other destinations that are targets for in-situ resource utilization (ISRU). Small exploration probes covered by this session may come in many different forms including special-purpose miniature spacecraft, standard format small platforms such as Cubesats or other microsats, nanosats, picosats, etc. Topics include new and emerging technologies including the use of commercial off the shelf (COTS) technologies, miniaturized subsystems including propulsion, avionics, guidance navigation & control, power supply, communication, thermal management, and sensors and instruments. The main focus of this session is on new and emerging systems, missions, driving technologies and applications that are both government-funded as well as driven by commercial ventures.

Co-Chairs Rapporteur
Leon Alkalai Rene Laufer Lihua Zhang

Mandala Space Ventures — UNITED STATES Luleā University of Technology — SWEDEN DFH Satellite Co. Ltd. — CHINA

B4.9 Small Satellite Missions Global Technical Session

The Small Satellite Missions Global Technical Session (GTS) is a collaboration between the International Academy of Astronautics (IAA) Small Satellite Missions Symposium and the International Astronautical Federation (IAF) Workforce Development/Young Professionals Programme Committee. This session is unique in that it allows for sharing of information on a global scale with presenters and audience both at the IAC venue and online at their home/work/university locations. Abstracts are solicited regarding operational missions or mature proposals for small satellite systems and related topics. These must have clear relevance on an international scale or at a business level, and must also provide young professionals a taste of what the space sector has to offer. Where possible, abstracts should have a wide interest in the community and should include transferable knowledge or lessons learned. Abstracts highlighting ingenuity or innovation are preferred. Examples include space missions utilizing small satellites that address specific new societal, scientific or commercial challenges, or novel technologies that have the potential to revolutionize space missions and/or enable their access to space. Papers are to describe the specific need, the small satellite approach that addresses this need, the benefits of this approach and the use of space technology, and demonstrate that other non-space approaches provide inferior solutions. Papers from, or directed at the young professional community are preferred. This session will be accepting submissions for oral presentations only.

Co-Chairs

GTS.5

Matthias Hetscher Likhit Waranon

DLR (German Aerospace Center) — GERMANY Geo-Informatics and Space Technology Development

Agency (Public Organization) - THAILAND

Rapporteurs

lex da Silva Curiel Victoria Barabash

Surrey Satellite Technology Ltd (SSTL) — UNITED Luleå University of Technology — SWEDEN

KINGDOM

B4.10 Joint Small Satellite/Space Debris Session on Small Satellite Operations for the Sustainability of Space A6.10 This session facilitates bilateral discussions between Small Satellite and Space Debris communities for shared understanding of the challeng

This session facilitates bilateral discussions between Small Satellite and Space Debris communities for shared understanding of the challenges/issues and to promote practical small satellite solutions for the long-term sustainability of space. It will include topics such as, but not limited to: - Small satellite constellations operations, sustainability, post-mission disposal and de-orbiting - Small-satellite missions: Lessons learned in the LEOP phase and in small satellite identification in early operational phase - Debris risk mitigation and Space Traffic Management technologies for small satellites and constellations - Small satellites for Post Mission Disposal, In-orbit servicing and support to sustainability actions and Space Traffic Management - Capacity and slotting for small satellite constellations - Lessons learned from sustainability and debris mitigation actions for small satellite missions and constellations - Active Debris Removal missions and rendezvous and docking missions. - Small satellite technology related to space sustainability - Best practice in implementing sustainability on very small spacecraft.

Co-Chairs

Paolo Marzioli Philip Davies

Sapienza University of Rome — ITALY Surrey Satellite Technology Ltd (SSTL) — UNITED KINGDOM

B4.IP Interactive Presentations: 33RD IAA SYMPOSIUM ON SMALL SATELLITE MISSIONS

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects on small satellite missions addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the B Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Danil Ivanov

Keldysh Institute of Applied Mathematics, RAS — RUSSIAN FEDERATION

Andreas Hornig

AerospaceResearch.net — GERMANY

Jian Guo Delft University of Technology (TU Delft) — THE Klaus Schilling

Zentrum für Telematik — GERMANY

B5

IAF SYMPOSIUM ON INTEGRATED APPLICATIONS

Space systems are more and more involved in the delivery of global services to end-users. Integrated Applications are built on the exploitation of space and terrestrial technologies for the benefit of the global population. This symposium will address various aspects of space-based downstream services with a special emphasis to the sustainable development of our planet in line with the objectives defined by the UN Sustainable Development Goals. Integrated applications combine data from existing space assets, such as Satellite Communications, Earth Observation, Satellite Navigation with airborne and ground-based systems, in addition to other technologies, such as big data, drone, analytics, IOT, 5G and others to deliver sustainable solutions and services responding to users' needs. The goal of the symposium is to discuss the different types of systems, tools and technologies, such as the kind of space and non-space data to be collected, how are data collected and integrated, that can enable the development of end-to-end solutions.

Coordinator

Roberta Mugellesi-Dow

 ${\it City of Los Angeles-UNITED STATES}$

European Space Agency (ESA) — UNITED KINGDOM

B5.1 **Tools and Technology in Support of Integrated Applications**

The session will focus on specific systems, tools and technology in support of integrated applications by addressing the various issues associated with applications development, the kind of data to be collected, how are data collected and how the data are integrated and distributed to address key user needs. Integrated Applications are built on the exploitation of space and terrestrial technologies for the benefit of the global population. Emerging technologies, such as Generative AI, Quantum Information, and other advanced technologies are rapidly revolutionizing and reshaping infrastructure and global-local economies. Leveraging these new transformative developments and understanding the disruptive potential with respect to technology, shifting demographics and global connectivity is essential for space technologies. Possible topics include: ground-truthing of data collected from space platforms; innovative, low-cost solutions for data distribution and access that focus on the space segment; new ways of integrating space and non-space data; data fusion and visualization tools; enabling technologies in support of new developments, models in support of applications, managing integrated applications programmes and public outreach efforts to connect the public to these applications.

Rapporteur

 ${\it City of Los Angeles-UNITED STATES}$

Roberta Mugellesi-Dow $\stackrel{\cdot}{\it European Space Agency (ESA)} - {\it UNITED KINGDOM}$ Marion Allayioti European Space Agency (ESA) — UNITED KINGDOM

Integrated Applications End-to-End Solutions B5.2

The session will be a forum for end-to-end solutions, case studies, proof-of-concept applications and current projects that aim to provide innovative, and sustainable solutions that combine terrestrial and space-based data sources with models and other technologies to address specific user requirements. These examples can cover a variety of sectors, like disaster/crisis monitoring and management, energy, food security, smart cities, transport, health, maritime, education, tourism, etc. The user needs, the organizations of the user communities, the service value chain, the business case and the societal impact of the solutions are among the many aspects that can be considered. Examples of projects with established partnerships between space and non-space stakeholders are appreciated. The different ways of assessing the impact of specific integrated applications in addressing the users and stakeholders needs and requirements could also be discussed.

Rapporteur Marcello Romano

Roberta Mugellesi-Dow Technical University of Munich (TUM) — GERMANY European Space Agency (ESA) — UNITED KINGDOM

Marion Allayioti European Space Agency (ESA) — UNITED KINGDOM

B5.3 Integrated Commercial Satellite Applications for Sustainability and Climate

Spaceflight represents one of humanity's most powerful tools for addressing our planet's most pressing global challenges. From monitoring Ozone depletion and deforestation to enabling precision agriculture and disaster response, space-derived data and insights have been essential in advancing sustainable solutions. This session invites paper focused on integrated commercial stallite applications that directly support the seventeen (17) UN Sustainable development goals, including but not limited to efforts in climate change mitigation, biodiversity preservation, food and water security, and public health. Contributions are encouraged that demonstrate how space-based assets integrated with terrestrial systems, innovative analytics, and cross-sector partnerships, can enable measurable progress toward sustainability objectives. Relevant domains include (but are not limited to): agriculture, water and air quality, maritime and land resource management, disaster resilience, space domain awareness and orbital debris mitigation, transportation and mobility, and energy transition. Papers may present operational case studies, prototype systems, cross-domain architectures, or strategic frameworks that showcase the power of integrated space applications to make life on Earth more sustainable, equitable, and resilient.

Co-Chairs Rapporteur Bruce Chesley John M. Horack Jeanne Holm

The Ohio State University College of Engineering — Teaching Science and Technology, Inc (TSTI) — UNITED STATES UNITED STATES

City of Los Angeles — UNITED STATES

B5.4 Advancing Earth observation with artificial intelligence across the full value chain

The integration of AI into Earth Observation is poised to be a truly transformative force, moving beyond incremental improvements to fundamentally reshape the entire sector. The potential of AI is so vast that a dedicated technical session within the EO Symposium is essential. While existing sessions are already providing opportunities to expore outcomes from the application of AI to single-point challenges, this session's novelty lies in its holistic, end-to-end approach. It invites all EO academics, professionals and End-Users working on or with EO foundational models to meet in one single session and share the state-of-the-art models. The session will go beyond isolated applications to explore how AI acts as an integrated engine across the full value chain. We'll invite speakers to present the latest research and findings on how Al is impacting every phase: from the earliest stages of mission and policy planning to the final delivery of actionable insights. It will explore how AI will revolutionize hardware manufacturing for EO, optimize strategic implementation, and enable new forms of data collection and processing. Ultimately, it will offer a comprehensive view of this AI-driven transformation connecting the dots from technology to strategy to real-world impact in Earth Observations.

Co-Chairs

Giulia Manzetti Luís Ferreira Piera di Vito Airbus Defence and Space — GERMANY European Space Agency (ESA/ESRIN) — ITALY OHB - GERMANY

Rapporteur

Beatrice Barresi

European Space Agency (ESA) — THE NETHERLANDS

B5.IP Interactive Presentations - IAF SYMPOSIUM ON INTEGRATED APPLICATIONS

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of integrated applications addressed in the classic Sessions. The IP session is not restricted to any specific topic related to space law and invites authors to contribute presentations on any interesting, relevant and current space law issues. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinator

Roberta Mugellesi-Dow

European Space Agency (ESA) — UNITED KINGDOM

City of Los Angeles — UNITED STATES

B6 IAF SPACE OPERATIONS SYMPOSIUM

The Space Operations Symposium, organised by the International Astronautical Federation (IAF), encompasses all aspects of spaceflight operations across the entire life cycle of space and ground segments. The sessions address space operations including human spaceflight and robotic space missions, from low-Earth and geosynchronous orbit, to lunar, planetary, science and exploration missions covering institutional space missions, commercial space systems, small spacecraft and constellations. This symposium addresses both, flight and ground systems, and includes mission planning, training, and real time operations.

Coordinators

Andreas Rudolph Otfrid Liepack Zeina Mounzer

European Space Agency (ESA) — GERMANY National Aeronautics and Space Administration (NASA), Jet Telespazio VEGA Deutschland GmbH — GERMANY

Propulsion Laboratory — UNITED STATES

Andreas Lyder Claude Audou

Pedersen, ESA - European Space Agency — THE NETHERLANDS

Claude Audouy
Centre National d'Etudes Spatiales (CNES) — FRANCE

NETHERLANDS

B6.1 Ground Operations - Systems and Solutions

This session addresses all aspects of ground systems and solutions for all mission types, for both preparation and execution phases.

Co-Chairs

Sean Burns Claude Audouy

EUMETSAT — GERMANY Centre National d'Etudes Spatiales (CNES) — FRANCE

Rapporteurs

Regina Mosenkis Keyur Patel

Airbus Defence & Space — GERMANY National Aeronautics and Space Administration (NASA), Jet

Propulsion Laboratory — UNITED STATES

B6.2 Innovative Space Operations Concepts and Advanced Systems

This session addresses innovative space operations and addresses advanced concepts, systems, approaches, processes and tools for operating existing and new types of missions, improving mission output in quality and quantity, and reducing cost.

Co-Chairs

Mario Cardano Andreas Ohndorf

Thales Alenia Space France — ITALY DLR (German Aerospace Center) — GERMANY

Rapporteurs

Jackelynne Silva-Martinez Yuichiro Nogawa

NASA — UNITED STATES Japan Manned Space Systems Corporation (JAMSS) —

JAPAN

B6.3 Mission Operations, Validation, Simulation and Training

This session addresses the broad topic of operations, from preparation through validation, simulation and training, including operations concepts, execution and lessons learned.

This includes both flight and surface operations.

Co-Chairs

Andreas Rudolph Zeina Mounze

 $\textit{European Space Agency (ESA)} - \textit{GERMANY} \qquad \qquad \textit{Telespazio VEGA Deutschland GmbH} - \textit{GERMANY}$

Rapporteurs

Borre Pedersen Matthew Duggan

Kongsberg Satellite Services AS — NORWAY The Boeing Company — UNITED STATES

B6.4 Flight & Ground Operations of HSF Systems - A Joint Session of the IAF Human Spaceflight and IAF Space Operations Symposia

This session addresses systems, advanced concepts, key challenges and their solutions related to flight and ground operations within governmental and commercial human spaceflight. Topics include among others; cutting-edge operational tools, solutions, efficient cost reduction measures, improved operational ground facilities or infrastructure, enhanced logistics concepts as well as new approaches for mission planning, ground transportation, and sustainment for sub-orbital, LEO and BEO.

Co-Chairs

B3.4

Dieter Sabath Annamaria Piras

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Thales Alenia Space Italia — ITALY

— GERMANY

Rapporteurs

Jérôme Campan Maria Grulich

European Space Agency (ESA) — GERMANY Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

— GERMANY

B6.5 Large Constellations & Fleet Operations

Access to space has been simplified and opened the door to a wider range of applications. Organisations are opting for distributed architectures of satellite constellations instead of single-satellite missions. The complexity of the overall system has shifted and necessitated a focus on efficient management and operation of a multitude of heterogeneous smaller elements. This session addresses the operations of large constellations, covering all related elements and phases; the operations concepts and solutions, the required ground segment architecture, the scale-up, deployment, and exploitation, the space traffic management approaches, end-of-life management, as well as the advantages, challenges, the outlook and foreseen developments.

Co-Chairs

 Simon Plum
 Thomas Uhlig

 European Space Agency (ESA-ESOC) — GERMANY
 Deutsches Zent

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
— GERMANY

Rapporteurs

Shawn Linam Mario Cardano

Qwaltec, Inc. — UNITED STATES Thales Alenia Space Italia — ITALY

B6.IP Interactive Presentations - IAF SPACE OPERATIONS SYMPOSIUM

This session offers a unique opportunity for authors to deliver key messages in an interactive presentation on any of the subjects of Space Operations addressed in the main technical sessions of this symposium. The interactive presentation is a new format that allows the authors to create presentations which can include videos and animations that are shown on screens in a dedicated area throughout the congress week. Authors of the interactive presentations are also given a 5 min slot to present during the Interactive Session. The five very best interactive presentations of the IAC are selected and announced during the Interactive Presentation Award Ceremony.

Co-Chairs

Andreas Rudolph Otfrid G. Liepac

European Space Agency (ESA) — GERMANY National Aeronautics and Space Administration (NASA), Jet

Propulsion Laboratory — UNITED STATES

Category **C1**

TECHNOLOGY

Common technologies to space systems, including astrodynamics, structures, power and propulsion

- IAF ASTRODYNAMICS SYMPOSIUM **C1**
- C2 IAF MATERIALS AND STRUCTURES SYMPOSIUM
- **C3** IAF SPACE POWER SYMPOSIUM
- C4 IAF SPACE PROPULSION SYMPOSIUM

Category coordinated by John C. Mankins, ARTEMIS Innovation Management Solutions, LLC, UNITED STATES

IAF ASTRODYNAMICS SYMPOSIUM

This symposium addresses advances in orbital mechanics, attitude dynamics, guidance, navigation and control of space systems

Coordinators

Elena Fantino **Vincent Martinot** Thales Alenia Space France — FRANCE

Khalifa University of Science and Technology (KUST) —

UNITED ARAB EMIRATES

C1.1 Attitude Dynamics (1)

This theme discusses advances in spacecraft attitude dynamics and control, as well as design, testing and performance of novel attitude sensors and actuators. This theme also covers dynamics and control of multiple interconnected rigid and flexible bodies, including tethered systems, and in-orbit assembly.

Marcello Romano Mikhail Ovchinnikov Bin Meng

 ${\it Keldysh\ Institute\ of\ Applied\ Mathematics,\ RAS-RUSSIAN\ FEDERATION}$ Technical University of Munich (TUM) — GERMANY Beijing Institute of Control Engineering, Beijing, 100080, P.R. China — CHINA

C1.2 Attitude Dynamics (2)

This theme discusses advances in spacecraft attitude dynamics and control, as well as design, testing and performance of novel attitude sensors and actuators. This theme also covers dynamics and control of multiple interconnected rigid and flexible bodies, including tethered systems, and in-orbit assembly.

Co-Chairs

Jinglang Feng

— China Korea Advanced Institute of Science and Technology (KAIST) Centre for Mechanical and Aerospace Science and – KOREA, REPUBLIC OF Technologies (C-MAST) — PORTUGAL

C1.3 Guidance, Navigation and Control (1)

The emphasis of this theme is on the studies and application related to the guidance, navigation and control of Earth-orbiting and interplanetary spacecraft, including formation flying, rendezvous and docking.

Co-Chairs Rapporteur

Shinichiro Sakai Steve Ulrich **Guo Linli**

ISAS/JAXA — JAPAN Institute of Manned Space System Engineering, China Carleton University — CANADA Academy of Space Technology (CAST) — CHINA

C1.4 **Guidance, Navigation and Control (2)**

The emphasis of this theme is on the studies and application related to the guidance, navigation and control of Earth-orbiting and interplanetary spacecraft, including formation

flying, rendezvous and docking.

Co-Chairs Rapporteur Mai Bando Hanspeter Schaub Krishna Dev Kumar

Kyushu University — JAPAN Colorado Center for Astrodynamics Research, University of Toronto Metropolitan University — CANADA

Colorado — UNITED STATES

C1.5 Guidance, Navigation & Control (3)

The emphasis of this theme is on the studies and application related to the guidance, navigation and control of Earth-orbiting and interplanetary spacecraft, including formation

flying, rendezvous and docking.

Rapporteur

Bernard Lübke-Ossenbeck Pennsylvania State University — UNITED STATES OHB System AG — GERMANY Taiwan Space Agency (TASA) — TAIPEI

C1.6 Mission Design, Operations & Optimization (1)

The theme covers design, operations and optimization of Earth-orbiting and interplanetary missions, with emphasis on studies and experiences related to current and future

C1.7

Rapporteur **Erick Lansard** Michèle Lavagna

Satellite Research Center, Nanyang Technological University (NTU) - SINGAPORE, REPUBLIC OF

UNESP - São Paulo Sate University — BRAZIL

Paolo Teofilatto Sapienza University of Rome — ITALY Politecnico di Milano — ITALY

Mission Design, Operations & Optimization (2)

The theme covers design, operations and optimization of Earth-orbiting and interplanetary missions, with emphasis on studies and experiences related to current and future missions.

Richard Epenoy

Stéphanie Lizy Destrez National Aeronautics and Space Administration Centre National d'Etudes Spatiales (CNES) — FRANCE SUPAERO- Ecole Nationale Supérieure de l'Aéronautique et de l'Espace — FRANCE (NASA), Johnson Space Center

C1.8 Orbital Dynamics (1)

This theme discusses advances in the knowledge of natural motions of objects in orbit around the Earth, planets, minor bodies, Lagrangian points and more generally natural orbital dynamics of spacecraft in the Solar System. It also covers advances in orbit determination.

— Japan

Co-Chairs

Rapporteur Othon Winter Kathleen Howell Yoshitsugu Hitachi

Purdue University — UNITED STATES

C1.9 Orbital Dynamics (2)

This theme discusses advances in the knowledge of natural motions of objects in orbit around the Earth, planets, minor bodies, Lagrangian points and more generally natural orbital dynamics of spacecraft in the Solar System. It also covers advances in orbit determination.

Rapporteui **Danil Ivanov**

Roberto Armellin The University of Auckland — NEW ZEALAND Josep J. Masdemont . Universitat Politecnica de Catalunya (UPC) — SPAIN

Keldysh Institute of Applied Mathematics, RAS - RUSSIAN

FEDERATION

C1.IP Interactive Presentations - IAF ASTRODYNAMICS SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Astrodynamics addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the C Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Vladimir Razoumny *RUDN University — RUSSIAN FEDERATION*

Manoranjan Sinha

Indian Institute of Technology Kharagpur — INDIA

Feng Jinglang

University of Strathclyde — UNITED KINGDOM

C2 IAF MATERIALS AND STRUCTURES SYMPOSIUM

The IAF Materials and Structures Committee addresses materials and structures technologies applicable to space transportation, space exploration and in orbit operation. Three sessions are allocated for the design, verification of qualification of launcher, spacecraft, large orbital structures and in-orbit operating vehicles and robotic systems. It concerns their structures, propellant tanks, propulsive subsystem mechanical components, fluidic and thermal control systems. Six sessions deal with specific technical topics related to the aforementioned different types of applications. Mastering the space structures control, dynamics and micro-dynamics is an important technical field of expertise ensuring the proper functioning of space transportation systems and in-orbit structures and robotic systems. The structures require for high reliability and performance a thorough selection, characterization and qualification of materials, considering the space environmental conditions covering a temperature range from cryogenic conditions up to extreme high temperatures during re-entry in the atmosphere. Protection systems are mandatory especially for in-orbit operating structures, vehicles, space stations and robotic systems. The application of additive manufacturing technologies allow to design and produce multifunctional structures. New smart materials, adaptive structures and nanotechnologies pave the way for new advanced designs of e.g. Sensors and actuators. Reduction of production cost are nowadays playing a very important role. A specific session has been set-up which is addressing the manufacturing and industrialization for Launch Vehicle and Space Vehicle Structures and components.

ArianeGroup — GERMANY

Deutsche Gesellschaft für Luft-und Raumfahrt, Lilienthal-

Oberth e.V. (DGLR) — GERMANY

C2.1 Space Structures I Design, Development and Verification (Launch Vehicles and Space Vehicles, including their Mechanical/Thermal/ Fluidic Systems)

The topics addressed in this session cover the aspects of the design, development and verification of space launch system structures (e.g. pressurized propellant tanks, nonpressurized structures of space vehicles, control surfaces) and their components (e.g. fluidic equipment and propulsive lines, thermal control systems). The aspects of design, development, verification, and qualification concern: • Thermo-Mechanical loads and environment • New structural concepts (e.g. multi-functional structures, design concepts for reusability) • Structure design and verification (stiffness, strength, static and dynamic stability, damage tolerance, reusability) • design, verification and qualification of fluidic and thermal control systems • Structure optimization • Materials • Static and dynamic ground testing • Exploitation of flight measurements and in-orbit testing • Lessons learned related to space vehicle structures and components development, verification and qualification

Rapporteur

Alwin Eisenmann **Coraline Dalibot** Jochen Albus

Deutsche Gesellschaft für Luft-und Raumfahrt, Lilienthal-Oberth e.V. (DGLR) — GERMANY

ArianeGroup — GERMANY

Rutherford Appleton Laboratory — UNITED KINGDOM

C2.2 Space Structures II Development and Verification (Orbital deployable and dimensionally stable structures, including mechanical and robotic systems and subsystems)

The topics to be addressed within this session concern all aspects of deployable and dimensionally stable structures e.g. reflectors, telescopes, antennas etc. It includes structural design, analysis and verification, shape control and thermal distortion as well as evaluation of analysis versus test results, of both on-ground and in-orbit testing. Furthermore, related mechanical, thermal and robotic systems and subsystems/mechanisms will be covered.

Paolo Gasbarri ${\it University of Rome~"La Sapienza"-ITALY}$ Pavel Trivailo

RMIT University (Royal Melbourne Institute of Technology)

– AUSTRALIA

Rapporteurs

Jiawen Qiu - CHINA

Javad Fatemi

Airbus Defence and Space Netherlands — NETHERLANDS

C2.3 Space Structures III Design, Development and Verification (Orbital infrastructure for in orbit service & manufacturing, Robotic and . Mechatronic systems, including their Mechanical/Thermal/ Fluidic Systems)

The topics to be addressed include all aspects of orbital infrastructures design, development and verification, including their mechanical/robotic/thermal/fluidic systems and subsystems, such as manned and unmanned spacecraft, space stations, re-entry vehicles and small satellites. Advanced subsystems and design of future exploration missions will be covered, considering issues arising from material selection, cost efficiency and reliability, and advancements in development with respect to engineering analysis, manufacturing, and test verification. Furthermore, design and testing of robotic and mechatronics systems for exploration, in-orbit servicing and manufacturing of space structures will be addressed. It is also planned to discuss the issues of experimental and computational simulation of functioning and full-scale tests of space infrastructures and their systems/subsystems. Attention will be paid to the problem of verification and validation of mathematical models for the design and experimental development of these objects at various phases of their life cycle.

Co-Chairs

Andreas Rittweger

Pier Marzocca

DLR (German Aerospace Center) — GERMANY

RMIT University — AUSTRALIA

Ijar M. Da Fonseca ITA-DCTA — BRAZIL Oleg Alifanov MAI - RUSSIAN FEDERATION

C2.4 Space Structures Control, Dynamics and Microdynamics

The topics to be addressed include dynamics analysis and testing, modal identification, landing and impact dynamics, pyro-shock, test facilities, vibration suppression techniques, damping, micro-dynamics, in-orbit dynamic environment, wave structural propagation, excitation sources and in-orbit dynamic testing. Attention will be paid to dynamics modelling and control of robotic and mechatronic systems (e.g. manipulators for the servicing and/or assembly of space structures, pointing mechanisms, etc).

Co-Chairs

Federica Angeletti Élcio Jeronimo de Oliveira

University of Rome "La Sapienza" — ITALY Associazione Italiana di Aeronautica e Astronautica

(AIDAA) — BRAZIL

André Da Silva

Rapporteurs

Harijono Djojodihardjo Bandung Institut of Tecnology — INDONESIA

European Space Agency (ESA) - FRANCE

C2.5 Space Structures and Materials for Extreme Environment (High-temperature and cryogenic-temperature applications including thermal insulation concepts)

The topics to be addressed include structures and materials for extreme environments, including both cryogenic applications and high temperature applications in space related domains. The session covers the full spectrum of material, design, manufacturing and testing. Operation of structures and mechanisms in cryogenic environment is quite challenging. This concerns the components design as well as the materials they are made of or lubricants needed for proper functioning. Tanks for storage of cryogenic propellants for launch vehicle application or long term storage of cryogenic liquids require an appropriate material selection and characterization, especially when organic composite materials are considered. Cryogenic insulation for propellant tanks and lines, especially for reusable launch vehicles exposed to aerothermal loads might require a combination with high temperature thermal protection systems. (Foam with metallic protection, vacuum insulated sandwich, stand-off thermal protection...). For the elevated temperature regime, this session includes carbon-carbon and ceramic matrix composites, ultra-high temperature ceramic matrix composites, ablative materials, ceramic tiles and insulations, together with innovative structural concepts making use of the above, for propulsion systems, launchers, hypersonic vehicles, re-entry vehicles, aero capture, power generation.

Co-Chairs Rapporteu

David E. GlassJames TuckerPierre BaudryNational Aeronautics and Space Administration (NASA)American Astronautical Society (AAS) — UNITED STATESArianeGroup — FRANCE

C2.6 Space Environmental Effects, Spacecraft and Habitats Protection

The focus of the session will be on space environmental effects, spacecraft and habitats protection. The effects of vacuum, radiation, atomic oxygen, spacecraft charging, thermal cycling, dissociation, meteoroids and space debris impact on space systems, materials and structures, and microelectronics will be addressed. Protective and shielding technologies, including analysis, simulation and testing of debris impact, and susceptibility of Commercial-Off-The-Shelf (COTS) micro-electronics to space radiation are covered.

Co-Chairs Rapporteur
Antonio Del Vecchio Anatolii Lohvynenko Giuliano Marino

CIRA Italian Aerospace Research Centre — ITALY

Yuzhnoye State Design Office — UKRAINE

CIRA Italian Aerospace Research Centre — ITALY

C2.7 Manufacturing and industrialization for Launch Vehicle and Space Vehicle Structures and components (High volume production, industrialization, automatization and digitalization)

This session explores manufacturing and industrialization approaches that enable scalable, cost-efficient, and high-quality production of launch vehicle and spacecraft structures and their components. We invite contributions covering innovative manufacturing methods, digital and automated production lines, design-to-manufacturing concepts, and industrialization strategies that reduce production cost, shorten time-to-market and increase reliability. Topics include advanced materials processing, high-cadence production, lean manufacturing, and the integration of digital tools such as AI, AR/VR, machine learning, digital twins, and real-time data analytics. Special attention will be given to case studies and lessons learned from the transition from prototype to series production – highlighting how digitalization and automation are transforming the way space systems are built.

 Co-Chairs
 Rapporteur

 Aicke Patzelt
 Elizabeth Barrios
 Oliver Kunz

 MT Aerospace AG — GERMANY
 Blue Origin LLC — UNITED STATES
 Beyond Gravity — SWITZERLAND

C2.8 Advancements in Materials Applications, Additive Manufacturing, and Rapid Prototyping Manufacturing and Rapid Prototyping

The topics to be addressed include advancements in materials applications, novel technical concepts in the rapid prototyping of space systems, and materials and processes for in space manufacturing and construction. Continuous improvements in materials and structural concepts are always needed to achieve extremely demanding goals in performance, reliability, and affordability of space components, especially in terms of greater accuracy/dimensional stability, longer life, greater survivability to both natural and threat environments, and producibility capability for high volume production. Different additive manufacturing (AMI) processes are currently used for different materials in the fabrication of metal, ceramic, and plastic parts. New and different processes are being developed for utilization of lunar regolith materials for manufacturing and construction. As a very new technique, AMI is strongly emerging due to the capability of optimization of structural parts for space applications as it concerns weight reduction, improvement of mechanical properties and reduction of development and lead times as well as cost reduction. The ability to utilize in situ resources for manufacturing and construction is very attractive for logistics reduction for deep space exploration.

 Co-Chairs
 Rapporteur

 Eleonore Poli
 Raymond Clinton
 Mario Marchetti

 Centre Suisse d'Electronique et de Microtechnique SA
 NASA Marshall Space Flight Center – UNITED STATES
 Sapienza University of Rome – ITALY

C2.9 Smart Materials and Adaptive Structures & Specialized Technologies, Including Nanotechnology The focus of the session will be on application of smart materials to spacecraft and launch vehicle systems, novel sensor and actuator concepts and new concepts for multi-

The focus of the session will be on application of smart materials to spacecraft and launch vehicle systems, novel sensor and actuator concepts and new concepts for multifunctional and intelligent structural systems. Also included in the session will be new control methods for vibration suppression and shape control using adaptive structures as well as comparisons of predicted performance with data from ground and in-orbit testing. Specialized material and structures technologies are explored in a large variety of space applications both to enable advanced exploration, and science/observation mission scenarios to perform test verifications relying on utmost miniaturization of devices and highest capabilities in structural, thermal, electrical, electromechanical/ optical performances offered by the progress in nanotechnology. Examples are the exceptional performances at nano-scale in strength, electrical, thermal conduction of Carbon nanotubes which are experiencing first applications at macro-scale such as nano-composite structures, high efficiency energy storage wheels, MEMS and MOEMS devices. Molecular nanotechnology and advances in manipulation at nano-scale offer the road to molecular machines, ultracompact sensors for science applications and mass storage devices. The Session encourages presentations of specialized technologies, in particular of nanomaterial related techniques and their application in devices offering unprecedented performances for space applications.

Co-Chairs Rapporteur

Behnam Ashrafi Aashish Agrawal Kanjuro Makihara
Canadian Aeronautics & Space Institute (CASI) — Space Applications Centre (ISRO) — INDIA Tohoku University — JAPAN

C2.IP Interactive Presentations - IAF MATERIALS AND STRUCTURES SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Materials and Structures addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the C Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

(CSEM) - SWITZERLAND

nen Albus Alwin Eis

ArianeGroup — GERMANY Deutsche Gesellschaft für Luft-und Raumfahrt, Lilienthal-

Oberth e.V. (DGLR) — GERMANY

Haroon B. Oqab

Space Canada Corporation — CANADA

C3 IAF SPACE POWER SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Materials and Structures addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the C Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinators

John C. MankinsKoji TanakaSerdar BaycanARTEMIS Innovation Management Solutions, LLC —Institute of Space and Astronautical Science (ISAS), JapanSolar Space Technologies Pty Ltd — AUSTRALIAUNITED STATESAerospace Exploration Agency — JAPAN

C3.1 Solar Power Satellite

This session deals with all aspects of concepts and architectures for space-based solar power plants and concepts integrating space and terrestrial energy activities. It will be structured in two half-sessions, one focusing on advances in the field of space solar power plant architectures and one on activities in the field of space & energy, including all types of conceptual, technical and organizational progress to better integrate space and terrestrial energy activities. It is the primary international forum for scientific and technical exchanges on this topic and thus provides a unique common platform for discussions. Topically it will include all system-level, architectural, organizational and commercial aspects, including modeling and optimization as well as related pontact placed.

exchanges on this topic and thus provides a unique common platform for discussions. Topically it will include all system-level, architectural, organizational and commercial aspects, including modeling and optimization as well as related non-technical aspects.

Co-Chairs

John C. Mankins

ARTEMIS Innovation Management Solutions, LLC — China Academy of Space Technology (CAST) — CHINA UNITED STATES

Ming Li

Massimiliano Vasile

Rapporteurs

Leopold Summerer Koji Tanaka

European Space Agency (ESA) — THE NETHERLANDS Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency — JAPAN

C3.2 Wireless Power Transmission Technologies and Application

This session focuses on all aspects of wireless power transmission systems. It covers wireless power transmission technologies, including laser, microwave-based as well as novel wireless power transmission technologies from the short ranges (e.g. within spacecraft or between two surface installations) up the very large distances for space exploration and power transmission from space to ground. The session covers theoretical as well as applied and experimental results, including emitter/receiver antenna architectures and deployment.

University of Strathclyde — UNITED KINGDOM

and power transmission from space to ground. The session covers theoretical as well as applied and experimental results, including emitter/receiver antenna architectures and deployment.

Co-Chair

Rapporteurs

China Academy of Space Technology (CAST) — CHINA

Ming Li

Rapporteurs Nobuyuki Kaya

Kobe University — JAPAN

C3.3 Advanced Space Power Technologies

This session covers all types of advanced space power technologies and concepts for the satellites, moon/asteroid/planetary exploration and manned space activities. These include technologies and concepts related to power generation (solar, nuclear, other) and harvesting, power conditioning, management and distribution, power transmission and energy storage.

Co-Chairs

 Gary Barnhard
 Lisa May

 National Space Society — UNITED STATES
 — UNITED STATES

Rapporteurs

ee Mason Koji Tanaka

National Aeronautics and Space Administration Institute of Space and Astronautical Science (ISAS), Japan (NASA), Glenn Research Center — UNITED STATES Aerospace Exploration Agency — JAPAN

C3.4 Space Power System for Ambitious Missions

This session is devoted to emerging concepts ranging from very small power (micro and milli-watt power) to very large power systems toward future ambitious space missions and space utilizations such as future moon village. These include concepts and technology developments of space power system for the increasing spacecraft market by the nano-, micro- and mini spacecraft. This session is dedicated to power systems for such applications as well as for long-duration exploration probes and sensors.

Co-Chairs

 Massimiliano Vasile
 Lisa May

 University of Strathclyde — UNITED KINGDOM
 — UNITED STATES

Rapporteurs

Xinbin Hou Koji Tanaka
CAST — CHINA Institute of S

CAST — CHINA Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency — JAPAN

C3.5 J C4.10 T

Joint Session on Nuclear Power and Propulsion Systems, and Propellantless Propulsion

This session, organized jointly between the Space Power and the Space Propulsion Symposia, addresses all aspects related to nuclear power and propulsion systems for space applications. The session also addresses all types of propellantless propulsion including (but not limited to) solar sails, magnetic sails, laser propulsion, tethers, etc.

Co-Chairs

 Leopold Summerer
 Saroj Kumar
 Lisa May

 European Space Agency (ESA) — THE NETHERLANDS
 Propulsion Research Center, University of Alabama in Huntsville — UNITED STATES
 — UNITED STATES

Rapporteur

Paolo Gessini Jamila Mansouri

Universidade de Brasília — BRAZIL European Space Agency (ESA) — The Netherlands

C3.IP

Interactive Presentations - IAF SPACE POWER SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Power addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the C Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinators

Ming Li Koji Tanaka Haroon Ogab China Academy of Space Technology (CAST) — CHINA Institute of Space and Astronautical Science (ISAS), Japan Kepler Space University — UNITED STATES Aerospace Exploration Agency — JAPAN

C4 IAF SPACE PROPULSION SYMPOSIUM

The Space Propulsion Symposium addresses sub-orbital, Earth to orbit and in-space propulsion. The general areas considered include both chemical and non-chemical rocket propulsion, air-breathing propulsion, and combined air-breathing and rocket systems. Typical specific propulsion categories of interest are liquid, solid and hybrid rocket systems, ramjet, scramjet, detonation-based propulsion and various combinations of air-breathing and rocket propulsion and nuclear, electric, solar and other advanced rocket systems, and propulsion systems dedicated to small satellites. The Symposium also welcomes contributions on component technologies, the operation and application to missions of overall propulsion systems, and unique propulsion test facilities.

Angelo Cervone Adam Okninski Ozan Kara Technology Innovation Institute (TII) — UNITED ARAB EMIRATES Delft University of Technology (TU Delft) — THE Łukasiewicz Research Network – Institute of Aviation (ILOT)

Saroj Kumar

Propulsion Research Center, University of Alabama in Bauman Moscow State Technical University — RUSSIAN Huntsville — UNITED STATES FEDERATION

- POLAND

Andrei Shumeiko

C4.1 Liquid Propulsion (1)

NETHERLANDS

The session Liquid Propulsion (1) is dedicated to Liquid Rocket Engines (mono-propellant or bi-propellant), with particular emphasis on full engine systems. The session welcomes manuscripts on all research and development areas, with a significant technical content: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Christophe Bonhomme Justin Hardi Centre National d'Etudes Spatiales German Aerospace Center (DLR) — GERMANY

(CNES) - FRANCE Rapporteurs

Ozan Kara

Technology Innovation Institute (TII) - UNITED ARAB Hylmpulse Technologies GmbH — GERMANY FMIRATES

C4.2 Liquid Propulsion (2)

The session Liquid Propulsion (2) is dedicated to Liquid Rocket Engines (mono-propellant or bi-propellant), with particular emphasis on sub-systems and specific components (including propellants). The session welcomes manuscripts on all research and development areas, with a significant technical content: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Co-Chairs **Angelo Cervone Christian Bach** Delft University of Technology (TU Delft) — THE Technische Universität Dresden (DTU) — GERMANY

Mario Kobald

NETHERLANDS Rapporteurs

Adam Okninski Elizabeth Jens Łukasiewicz Research Network – Institute of Aviation Jet Propulsion Laboratory - California Institute of (ILOT) - POLANDTechnology — UNITED STATES

C4.3 Solid and Hybrid Propulsion (1)

Łukasiewicz Research Network – Institute of Aviation

The session Solid and Hybrid Propulsion (1) is dedicated to Solid and Hybrid Rocket motors, with particular emphasis on full systems. The session welcomes manuscripts on all research and development areas: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Hylmpulse Technologies GmbH — GERMANY

Co-Chairs Adam Okninski Mario Kobald

(ILOT) - POLAND

Yen-Sen Chen Yuji Saito American Institute of Aeronautics and Astronautics (AIAA) — UNITED STATES Tohoku University — JAPAN

C4.4 Solid and Hybrid Propulsion (2)

The session Solid and Hybrid Propulsion (2) is dedicated to Solid and Hybrid Rocket motors, with particular emphasis on sub-systems and specific components (including propellants). The session welcomes manuscripts on all research and development areas: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Co-Chairs

Didier Boury Ozan Kara Technology Innovation Institute (TII) — UNITED ARAB ArianeGroup SAS — FRANCE **EMIRATES**

Rapporteurs

Arif Karabeyoglu Koc University — TÜRKIYE Stefano Mungiguerra Università degli Studi di Napoli "Federico II" — ITALY

C4.5 **Electric Propulsion (1)**

The session Solid and Hybrid Propulsion (2) is dedicated to Solid and Hybrid Rocket motors, with particular emphasis on sub-systems and specific components (including propellants). The session welcomes manuscripts on all research and development areas: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Jamila Mansouri Andrei Shumeiko

European Space Agency (ESA) — THE NETHERLANDS Bauman Moscow State Technical University — RUSSIAN

FEDERATION

Rapporteurs

Marco Di Clemente **Arnau Pons Lorente**

Space Generation Advisory Council (SGAC) — UNITED Italian Space Agency (ASI) — ITALY

STATES

C4.6 **Electric Propulsion (2)**

The sessions Electric Propulsion (1) and Electric Propulsion (2) are dedicated to all aspects of Electric Propulsion, including full systems, sub-systems and specific components. The sessions welcome manuscripts on all research and development areas: design, testing (including diagnostics and test facilities), analysis and calculations, modelling, applications, science and fundamentals.

Paolo Gessini

European Space Agency (ESA) - THE NETHERLANDSUniversidade de Brasília — BRAZIL

Rapporteurs

Angelo Cervone Lahib Balika

Delft University of Technology (TU Delft) — THE Thales Alenia Space — UNITED KINGDOM NETHERLANDS

C4.7 Hypersonic Air-breathing and Combined Cycle Propulsion, and Hypersonic Vehicle

This session covers hypersonic air-breathing and combined cycle propulsion with space applications. The typical types of engine considered in this session include: turbojet, ramjet, Scramjet, detonation engine, Turbine Based Combined Cycle (TBCC), Rocket Based Combined Cycle (RBCC), Hypersonic Pre-cooled Propulsion, Air Turbo Rocket (ATR) and other types of hypersonic combined cycle propulsion, together with the associated vehicle.

Co-Chairs

Yen-Sen Chen Riheng Zheng Beihang University — CHINA

American Institute of Aeronautics and Astronautics (AIAA) — UNITED STATES

Rapporteurs

Didier Boury Lahib Balika

ArianeGroup SAS — FRANCE Thales Alenia Space — UNITED KINGDOM

C4.8 Joint Session between IAA and IAF for Small Satellite Propulsion Systems B4.5A

This session will pay particular attention to propulsion systems and associated technologies as an enabler to efficient small satellite access to space and orbit change. Papers are invited discussing the particular challenges of design, manufacture, testing, operations and technological developments of small satellite propulsion systems, and the challenges of obtaining high performance within a small volume and mass. The scope includes chemical and electrical propulsion systems for major orbit changes, fine orbit control and maintenance, and end-of-life disposal. For papers with an emphasis on the small satellite and its system design, refer to other B4 sessions. For a focus on other propulsion systems and technologies, refer to other C4 sessions.

Co-Chairs

Arnau Pons Lorente Jeff Emdee

Space Generation Advisory Council (SGAC) — UNITED The Aerospace Corporation — UNITED STATES

STATES

Rapporteurs

Ulrich Gotzig Elena Toson

ArianeGroup — GERMANY

C4.9 **Disruptive Propulsion Concepts for Enabling New Missions**

This session will explore advanced and disruptive propulsion technologies, systems, ideas (including integration of different propulsion concepts) showing potential to enable new mission concepts, or to enhance the capabilities of current mission concepts.

Elena Toson Sabrina Corpino

T4i — ITALY Politecnico di Torino — ITALY

Rapporteurs

Giorgio Saccoccia **Christian Bach**

European Space Agency (ESA) — FRANCE Technische Universität Dresden (DTU) — GERMANY

C4.10 C3.5

Joint Session on Nuclear Power and Propulsion Systems, and Propellantless Propulsion

This session, organized jointly between the Space Power and the Space Propulsion Symposia, addresses all aspects related to nuclear power and propulsion systems for space applications. The session also addresses all types of propellantless propulsion including (but not limited to) solar sails, magnetic sails, laser propulsion, tethers, etc.

- UNITED STATES

Leopold Summerer Lisa May

Propulsion Research Center, University of Alabama in Huntsville — UNITED STATES ESA-European Space Agency - THE NETHERLANDS

Rapporteurs

Paolo Gessini

European Space Agency (ESA) — THE NETHERLANDS Universidade de Brasília — BRAZIL

C4.IP

Interactive Presentations - IAF SPACE PROPULSION SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Propulsion addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the C Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinators

Saroi Kumar

Propulsion Research Center, University of Alabama in Huntsville — UNITED STATES

Andrei Shumeiko

Bauman Moscow State Technical University — RUSSIAN

Elizabeth Jens

Jet Propulsion Laboratory - California Institute of Technology — UNITED STATES

Category

INFRASTRUCTURE

Systems sustaining space missions, including space system transportation, future systems and safety

- IAF SPACE SYSTEMS SYMPOSIUM **D1**
- IAF SPACE TRANSPORTATION SOLUTIONS AND INNOVATIONS SYMPOSIUM
- 24TH IAA SYMPOSIUM ON BUILDING BLOCKS FOR FUTURE SPACE EXPLORATION AND DEVELOPMENT **D3**
- D4 24TH IAA SYMPOSIUM ON VISIONS AND STRATEGIES FOR THE FUTURE
- D5 59[™] IAA SYMPOSIUM ON SAFETY, QUALITY AND KNOWLEDGE MANAGEMENT IN SPACE ACTIVITIES
- D₆ IAF SYMPOSIUM ON COMMERCIAL SPACEFLIGHT SAFETY ISSUES

Category coordinated by Roberta Mugellesi-Dow, European Space Agency (ESA), UNITED KINGDOM

D1

IAF SPACE SYSTEMS SYMPOSIUM

The Space Systems Symposium, organized by the International Astronautical Federation (IAF), addresses the present and future development of space systems, architectures, and technologies, with sessions on Innovative Systems toward Future Architectures, Technologies that Enable Space Systems, Emergent Space Systems, Cooperative Systems, Systems Engineering Modeling and Analysis, Systems Engineering Approaches, Processes and Methods, and Lessons Learned in Space Systems.

European Space Agency (ESA) — GERMANY

Tibor S. Balint

Jet Propulsion Laboratory — UNITED STATES

National Aeronautics and Space Administration (NASA) — UNITED STATES

D1.1

Innovative Systems toward Future Architectures

This session explores innovative system concepts, technical capabilities that enable future architectures, new applications, new business models and evolution of the global ecosystem. It also analyses how new challenges such as reduction of environmental impact (space debris, CO2 footprint reduction) can induce new space system architectures, applications, eventually proposing solutions to reduce global warming and debris mitigation. As examples: Could Space based Solar Power contribute to reduction of CO2 emission and make an economically and technically feasible option to meet the energy needs? Will in-space transportation and logistics develop in association with reusable launchers? Which new applications could be enabled i.e., Active Debri Removal (ADR), In-orbit Service and Manufacturing (IOSM) or recycling? How would these changes affect the ecosystems? This session objective is to connect innovators and researchers in building a vision of transformation of space systems architecture. In this perspective, the dreams of yesterday are the hope of today and the reality of tomorrow.

Co-Chairs

Xavier Roser Hui Du

Thales Alenia Space France — FRANCE Institute of Spacecraft System Engineering, China Academy

of Space Technology (CAST) — CHINA

Rapporteurs

Mamatha Maheshwarappa ${\it UK Space Agency-UNITED KINGDOM}$ Marcos Eduardo Rojas Ramirez

Space Generation Advisory Council (SGAC) — FRANCE

D1.2

Technologies that Enable Space Systems

This session focuses on innovative and technological developments that are often high risk, but which have the potential to significantly enhance the performance of existing and new space systems. Leading-edge technologies that enable space applications come in many diverse forms, from system level innovations down to the subsystem or component level. Examples include instrumentation, sensors, biotechnology, components, micro- and nano-technology, advanced new structures and software techniques. Additionally, architectural solutions incorporating technologies such as artificial intelligence, machine learning, virtual/augmented reality, autonomy and automation are also of interest. The scope of the session includes architectures for single satellite systems or multiple satellite systems, such as constellations, formations, swarms, distributed systems, and system-of-systems (including hybridization with terrestrial systems). Ground-versus-space allocation of functionality and aspects of autonomy, both on-board and on-ground, may be addressed

Co-Chairs

Jill Prince

Steven Arnold

The Johns Hopkins University Applied Physics Laboratory — National Aeronautics and Space Administration (NASA)

Rapporteur

Audrey Berguand

— UNITED STATES

Sybren De Jong

European Space Agency (ESA) — THE NETHERLANDS Netherlands Aerospace Centre (NLR) — THE NETHERLANDS

D1.3

Emergent Space Systems

This session focuses on the novel aspects of currently emerging systems, with a special emphasis put on new system design paradigms related to Human-Centered Design (HCD) and Very Low Earth Orbit (VLEO) systems. In this context, we seek ideas on how and where HCD, Human System Integration (HSI), User Experience/User Interface (UX/UI) design, Augmented and Virtual Reality (AR/VR) systems, as well as designerly processes may broaden technical fields and provide demonstrable benefit throughout the full lifecycle, from formulation through implementation to operations. Our session addresses today's challenges by leveraging novel approaches for current and emerging space systems, but also for system of systems, where the space element represents key contributions to overall system topology.

Co-Chairs

UNITED STATES

International Academy of Astronautics (IAA) —

Reinhold Bertrand

European Space Agency (ESA) — GERMANY

Rapporteur

Igor V. Belokonov

Samara National Research University (Samara University)
— RUSSIAN FEDERATION

Cooperative Systems D1.4.

Emphasis of this session is on innovative cooperative and self-organizing approaches to address increasing complexities in space systems coordinating several actors. Examples concern the following fields: formations in multi-satellite systems, in-space servicing, robotics in planetary explorations or in satellite production. Contributions related to algorithms, software simulations, testbeds and in-orbit experiences for cooperative systems are highly encouraged.

Otfrid G. Liepack Klaus Schilling

National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory — UNITED STATES Zentrum für Telematik — GERMANY

Rapporteurs

Eberhard Gill Avid Roman-Gonzalez

 ${\it Delft\ University\ of\ Technology-THE\ NETHERLANDS}$ Asociacion Civil Universidad de Ciencias y Humanidades

- PERU

D1.5 **Systems Engineering Modeling and Analysis**

This session focuses on digital applications for improved systems engineering modeling and analysis across the product life-cycle. The session will gather a community of those on "the front lines" of implementing system modeling. Papers are sought in three topical areas: 1. Tactical results, use cases or examples, which validate mission, systems or sub-system application and subsequent return on investment for traditional versus future SE approaches. 2. Strategic results, organizational progress toward a fully integrated enterprise digital solution, including how SE modeling fits into that solution space. 3. Innovative approaches, more forward looking or lower TRL tooling advances which offer large improvement opportunities and their potential application (AI/ML for example). Lessons learned on challenges and opportunities within the three topic areas are of special interest and highly desired

Rapporteur

Jon Holladay Thierry Floriant Sapna Rao

National Aeronautics and Space Administration (NASA) Centre National d'Etudes Spatiales (CNES) — FRANCE Lockheed Martin (Space Systems Company) — UNITED — UNITED STATES STATES

D1.6 Systems Engineering Approaches, Processes and Methods

This session focuses on state-of-the-art systems engineering methodologies to deliver space systems of high quality that meet stakeholder needs at a manageable risk, reducing the development time and life cycle cost. Of special interest are papers on multi-disciplinary approaches, processes, methods, tools, and training used for improving development and life cycle productivity and risk management, and increasing safety, availability, reliability, resilience, dependability, testability, ease of operation, serviceability and quality of life cycle cost estimates. Papers are sought in four topical areas: 1) space systems architecting, which includes campaign analysis and design, mission analysis and design, and systems of systems (SoS); 2) trade off studies, optimization, and simulation tools and decision analysis; 3) AIV&V (assembly, integration, verification and validation); and 4) space systems management, which includes stakeholder management, technical planning, control and assessment of space system design, earned value management, technical risk management, requirements management, configuration management, and information management.

Co-Chairs Rapporteur

Guilherme Venticinque **Timothy Cichan Dapeng Wang** National Institute for Space Research - INPE — BRAZIL Lockheed Martin Corporation — UNITED STATES Beihang University — CHINA

D1.7 Lessons Learned in Space Systems

Lessons learned are essential to significantly improve space projects implementation practices and, in turn, increase their success-rate. Collecting and sharing information regarding analysis of past and recent successes/failures is deemed the key element to support that and, in addition, it is also highly valuable since it can foster setting up of a collaborativ paradigm where people from different Systems Engineering & Management cultures, in different projects, and at different maturity stages, share knowledge among teams, organizations and people, to contribute to the above common practice. For the above practice to be effective, this retrospective viewpoint shall come from a variety of sources. In this regard, the scope of the D1.7 session covers the full spectrum of a space project life-cycle activities such as: project management and systems engineering; systems and missions design; systems MAIVT (manufacturing, assembly, integration, verification, and testing); mission execution, systems exploitation, and post-mission evaluation. Additional added-value can also come from discussion and examination on side-aspects (yet important) as: diversity of standards/practices including lessons learned yielded from their adoption interpretation and application; as well as project-data management approaches (design results, engineering models, documentation, mission results, etc.) to preserve and make them available to future missions

Co-Chairs Rapporteur

Giuseppe Guidotti **Hamed Gamal** Japan Aerospace Exploration Agency (JAXA) — JAPAN Mvnaric — GERMANY Deimos Space SLU — ITALY

D1.IP Interactive Presentations - IAF SPACE SYSTEMS SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Systems addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Jill Prince Matteo Emanuelli Mamatha Maheshwarappa Airbus Defence and Space — GERMANY $\overline{\it UK}$ Space Agency — $\overline{\it UNITED}$ KINGDOM National Aeronautics and Space Administration (NASA) —

UNITED STATES

IAF SPACE TRANSPORTATION SOLUTIONS AND INNOVATIONS SYMPOSIUM D2

Topics of this symposium, organized by the International Astronautical Federation (IAF), are to address worldwide space transportation solutions and innovations as well as relevant technologies needed and ground support infrastructure. The symposium addresses existing vehicles, vehicles in development and future space transportation solutions. The goal is to foster understanding and cooperation amongst the world's space-faring organizations. The corresponding activities are devoted to different types of space transportation missions, systems (launch vehicle system and/or the propulsion stages, expendable or reusable, manned or unmanned) and to their safety and support operations

Oliver Kunz Aaron Weaver Yuguang Yang China Aerospace Science & Industry Corporation Beyond Gravity — SWITZERLAND

National Aeronautics and Space Administration (NASA) — (CASIC) - CHINA UNITED STATES

D2.1 Launch Vehicles in Service or in Development

Review of up to date status of launch vehicles currently in use in the world or under short term development with a special focus on the Space Transportation activities in Australia and New Zealand: This session also plans to highlight the Space Transportation activities in Australia and New Zealand. This can include: - Launch related propulsion/ stage development, - Orbital launch systems in development and operational, - Orbital launch sites as well as - In space Transportation systems.

Co-Chairs

Aaron Weaver Martin Sippel

National Aeronautics and Space Administration (NASA)

UNITED STATES

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) — **GERMANY**

Rapporteur

Giuseppe Rufolo Anurup Marath

CIRA Italian Aerospace Research Centre — ITALY Indian Space Research Organization (ISRO) — INDIA

D2.2 Launch Services, Missions, Operations and Facilities

Review of the current and planned launch services and support, including economics of space transportation systems, financing, cost, insurance, licensing. Advancements in ground infrastructure, ground operations, production methods, mission planning and mission control for both expendable and reusable launch services

Tina Buechner da Costa Iwao Igarashi

European Space Agency (ESA) - FRANCEMitsubishi Heavy Industries, Ltd. — JAPAN

Christian Corba Geovian Stower

EUMETSAT — GERMANY Kenya Space Agency (KSA) — KENYA National Aeronautics and Space Administration (NASA). ${\it Langley Research Center-UNITED STATES}$

D2.3 **Upper Stages, Space Transfer, Entry and Landing Systems**

Discussion of existing, planned or new advanced concepts for cargo and human orbital transfer. Includes current and near term transfer, entry and landing systems, sub-systems

and technologies for accommodating crew and cargo transfer in space.

Nicole Viola Oliver Kunz

Beyond Gravity — SWITZERLAND Politecnico di Torino — ITALY

Rapporteurs

Co-Chairs

John M. Horack **Ysolde Prevereaud**

The Ohio State University College of Engineering — ONERA - The French Aerospace Lab — FRANCE

UNITED STATES

D2.4 **Future Space Transportation Systems**

Discussion of future overall transportation system designs and operational concepts for both expendable and reusable systems for Earth-to orbit transportation and exploration missions considering also emerging space ventures and deep space transportation.

José Gavira Izquierdo Pier Michele Roviera $\stackrel{\cdot}{\it European Space Agency (ESA)} - {\it THE NETHERLANDS}$ SAFRAN — UNITED STATES

Rapporteurs

Nicolas Bérend **Geovian Stower**

ONERA - The French Aerospace Lab — FRANCE Kenya Space Agency (KSA) — KENYA

D2.5 **Technologies for Future Space Transportation Systems**

Discussion of technologies enabling new reusable or expendable launch vehicles and in-space transportation systems. Emphasis is on early TRL hardware development and verification prior to flight, including ground testing and/or innovative technology prototype demonstrations not yet involving flight.

Franck Koebel **Christophe Bonnal**

ArianeGroup — FRANCE European Conference for Aero-Space Sciences (EUCASS)
— FRANCE

Rapporteurs

Shoyo Hyodo Shana Diez

SpaceX — UNITED STATES Mitsubishi Heavy Industries, Ltd. — JAPAN

D2.6 Future Space Transportation Systems Verification and In-Flight Experimentation

Discussion of atmospheric and in-space flight testing and qualification of system, sub-system, and advanced technologies for future launch vehicles and in-space transportation systems. Emphasis is on higher TRL in-flight experimentation, demonstration, and qualification, including test plans and innovative technology prototype demonstrations involving or leading to flight as well as new and unique test platforms and capabilities.

Co-Chairs

David E. Glass Mauro Augelli

 $\stackrel{-}{\it UK Space Agency} - \it UNITED KINGDOM$ National Aeronautics and Space Administration

Rapporteurs

(NASA) — UNITED STATES

Christie Maddock Tetsuo Hiraiwa

University of Strathclyde — UNITED KINGDOM Japan Aerospace Exploration Agency (JAXA) — JAPAN

Suborbital Rockets and Small Launchers: Concepts and Operations including Student Rocketry D2.7

Discussion of existing, planned and future Launchers for small payloads ranging from 1500 kg to as low as 1 kg into Low Earth Orbit. Includes innovative solutions such as airborne systems, evolutions from sub-orbital concepts, combinations of existing / emerging elements and new elements, reusable, partially reusable and expendable concepts, and flexible, highly responsive concepts considering also student rocketry technical achievements for the development of their sounding rockets: development of subsystems, safety issue, uses

of novel technologies.

Co-Chairs

Co-Chairs Rapporteur

Harry A. Cikanek Christian Corba Joachim Despatures National Oceanic and Atmospheric Administration EUMETSAT — GERMANY Ecole Polytechnique Fédérale de Lausanne (EPFL) -**SWITZERLAND**

(NOAA) — UNITED STATES

D2.8 **In-Space Transportation Solutions and Space Logistics**

This session is focused on in-space transportation capabilities and mission architectures, existing or under study. Related enabling and support missions, such as robotic servicing

and supply, as well as technology roadmaps shall be discussed. The session will also implement large scale exploration missions.

Rapporteur Akhil Guiral Josef Wiedemann Élcio Jeronimo de Oliveira

The Aerospace Corporation — UNITED STATES Isar Aerospace Technologies GmbH — GERMANY Associazione Italiana di Aeronautica e Astronautica (AIDAA) - BRAZIL

D2.9 Sustainable Approaches and Impact of Space Transportation Solutions on Earth + Space Environment and on General Safety D6.2

This session is dedicated to the study of the impact of space transportation solutions on the earth and space environment and on the relevant safety aspects. This session can address methodologies for life cycle analysis, environmental impact mitigation and assessment, sustainability, and eco-design for space transportation. It will also address new and emerging technologies for space transportation systems to mitigate the impact on the earth and space environments, yet guaranteeing Space and Ground Safety

Co-Chairs

Shana Diez Charles E. Cockrell Jr. Francesco Santoro National Aeronautics and Space Administration (NASA) — UNITED STATES SpaceX — UNITED STATES Altec S.p.A. — ITALY

Francesco Santoro Aline Decadi Altec S.p.A. — ITALY European Space Agency (ESA) — FRANCE

D2.IP Interactive Presentations - IAF SPACE TRANSPORTATION SOLUTIONS AND INNOVATIONS SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Transportation Solutions and Innovations addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Ysolde Prevereaud Jens Lassmann Aaron Weaver

ArianeGroup — GERMANY ONERA - The French Aerospace Lab — FRANCE National Aeronautics and Space Administration (NASA) — UNITED STATES

D3 24TH IAA SYMPOSIUM ON BUILDING BLOCKS FOR FUTURE SPACE EXPLORATION AND DEVELOPMENT

This symposium, organised by the International Academy of Astronautics (IAA), will involve papers and discussion that traverse a wide range of highly valuable future space capabilities (FSC) — in other words "building blocks" for future space exploration, development and discovery — that could enable dramatic advances in global space goals and objectives. The international discussion of future directions for space exploration and utilisation is fully underway, including activities involving all major space-faring nations. Decisions are now being made that will set the course for space activities for many years to come. New approaches are needed that establish strategies, architectures, concepts and technologies that will lead to sustainable human and robotic space exploration and utilisation during the coming decades. The symposium will examine the possible paths, beginning with current capabilities such as the International Space Station, which may lead to ambitious future opportunities for space exploration, discovery and benefits. The sessions that comprise this symposium are key elements of current or planned International Academy of Astronautics (IAA) studies.

Coordinators

John C. Mankins Maria Antonietta Perino ARTEMIS Innovation Management Solutions, LLC — Thales Alenia Space Italia — ITALY UNITED STATES

D3.1 Strategies & Architectures as the Framework for Future Building Blocks in Space Exploration and Development

Future scenarios for sustainable exploration and development in space will unfold in the context of global conditions that vary greatly from those of the 1950s-1970s (the first generation of space programmes, driven by international competition), or those of the 1980s-2000s (the second generation of space programmes, enabled by international cooperation). Looking to the future, it is likely that space-faring countries will pursue their goals and objectives in a more building-block fashion focused on developing high-value future space capabilities, rather than through massive, geo-politically driven programmes. Increasingly, these developments may also reflect future commercial space opportunities. As a result, it is important that the international community should engage in an ongoing discussion of strategies and architectures to frame a "building block" approach to our future in space. Such a discussion should involve sustainable budgets and multiple-purpose system-of-systems capabilities that lead to a diverse range of future activities of broad benefit to humanity. This session, which is related to a prospective new International Academy of Astronautics (IAA) study group, will address strategies and architectural approaches that may allow a new paradigm, a "building block" approach, to be established among the space-faring countries. Papers are solicited in these and related areas.

Co-Chairs Rapporteur

John C. Mankins Maria Antonietta Perino Nasr Al-Sahhaf ARTEMIS Innovation Management Solutions, LLC — Thales Alenia Space Italia — ITALY Moon Village Association (MVA) — SAUDI ARABIA LINITED STATES

D3.2A Systems and Infrastructures to Implement Sustainable Space Development and Settlement - Systems

The emergence of novel systems and infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. New, reusable space infrastructures must emerge in various areas include the following: (1) infrastructures that enable affordable and reliable access to space for both exploration systems and logistics; (2) infrastructures for affordable and reliable transportation in space, including access to/from lunar and planetary surfaces for crews, robotic and supporting systems and logistics; (3) infrastructures that allow sustained, affordable and highly effective operations on the Moon, Mars and other destinations; and, (4) supporting in space infrastructures that provide key services (such as communications, navigation, etc.). Considering its focus on design and operation solutions for future crewed missions, This session will be jointly curated with the recently-formed IAF Space Habitats Committee, whose aims include fostering research and partnerships in the design, the construction, the scalability, the commercialization, the disassembling and the sustainability of space habitats and associated infrastructures, emphasizing Moon and Mars surface structures and orbital stations. Papers are solicited in all areas related to the scope of this session, from a variety of disciplinary approaches.

Co-Chairs

Frank Preud'homme **Gary Barnhard** Julie Patarin-Jossec Redwire Space — BELGIUM ${\it National Space Society-UNITED STATES}$ Spartan Space — FRANCE

Rapporteur

Paivi Jukola

D3.2B

Aalto University — FINLAND

Systems and Infrastructures to Implement Sustainable Space Development and Settlement - Technologies

The emergence of new technologies will be essential to realizing the various systems and infrastructures that will be needed to enable ambitious scenarios for sustainable future space exploration, utilization and eventual settlement. Technologies for new, reusable space infrastructures are needed, including the following: (1) infrastructures that enable affordable and reliable access to space for both exploration systems and logistics; (2) infrastructures for affordable and reliable transportation in space, including access to/from lunar and planetary surfaces for crews, robotic and supporting systems and logistics; (3) infrastructures that allow sustained, affordable and highly effective robotic and human operations on the Moon, Mars and other destinations; and, (4) supporting in space infrastructures that provide key services (such as communications, navigation, etc.). Papers are solicited in these and related areas.

Rapporteur

Raymond G. Clinton **Gary Barnhard** NASA Marshall Space Flight Center — UNITED STATES

Xtraordinary Innovative Space Partnerships, Inc. — UNITED STATES

D3.3 Space Technology and System Management Practices and Tools

The effective management of space technology and systems development is critical to future success in space exploration, development and discovery. This session is the next in an ongoing series at the International Astronautical Congress that provides a unique international forum to further the development of a family of 'best practices and tools' in this important field. Specific areas of potential interest include: (1) Technology Management Methodologies and Best Practices; (2) R&D Management Software Tools and Databases; and (3) Systems Analysis Methods and Tools. The full range of R&D activities is appropriate for discussion, ranging from technology development long-term planning, through technology R&D programmes, to system development projects, with special emphasis on the transition of new technologies from one stage to the next. Particular topics could include: Technology Readiness Levels (TRLs) and Technology Readiness Assessments, Technology R&D Risk Assessments and Management, Advanced Concepts Modeling Approaches and Tools, etc. Either more theoretical discussions, or examples of applications of R&D management techniques and/or tools to specific R&D programmes and projects are of interest for the session.

Co-Chairs Rapporteur

John C. Mankins Maria Antonietta Perino Paivi Jukola

ARTEMIS Innovation Management Solutions, LLC — Thales Alenia Space Italia — ITALY Aalto University — FINLAND UNITED STATES

D3.IP Interactive Presentations Interactive Presentations - 24th IAA SYMPOSIUM ON BUILDING BLOCKS FOR FUTURE SPACE EXPLORATION

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Building Blocks for Future Space Exploration and Development addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

 John C. Mankins
 Maria Antonietta Perino

 ARTEMIS Innovation Management Solutions, LLC —
 Thales Alenia Space Italia — ITALY

 UNITED STATES

D4 24TH IAA SYMPOSIUM ON VISIONS AND STRATEGIES FOR THE FUTURE

This 24th symposium is organized by the International Academy of Astronautics (IAA). In Space Activities the focus is usually kept on the short term developments, at the expense of future goals. The Symposium will discuss topics with at least 20 to 30 years prospective lead time and identify technologies and strategies that need to be developed. These developments will be examined with the goal to support also short/medium term projects and to identify priorities required for their development. The Sessions in the Symposium will address innovative technologies and Strategies to develop Space Elevator as well as Interstellar Precursor Missions. A session will address also how the Moon Village can contribute to the resolution of World Societal Changes as well as increasing the countries engaged in lunar activities

Coordinators

Giuseppe Reibaldi Gongling Sun
Moon Village Association (MVA) — AUSTRIA International Space University — FRANCE

D4.1 Innovative Concepts and Technologies

1) In order to realize future, programs of space exploration and resource utilization, a focused suite of transformational new system concepts and enabling technologies must be developed during the coming decades. The technical objectives to be pursued should be drawn from a broad, forward-looking view of the technologies and system needed, but must be sufficiently focused, to allow tangible progression and dramatic improvements over current capabilities. 2) Ideally, the concepts should be presented in three categories: 1 Concepts which represent a significant advance, but require laboratory advancement, and 2. Concepts which have been demonstrated to some level in the laboratory, but require demonstration to validate their utility, and 3. Concepts which identify cross-cutting advances which, when combined can be successfully developed to support transformational new system concept. Papers are solicited in these and related areas, with a priority on concepts that have progressed at least into laboratory experiments.

Co-Chairs Rapporteur

Alessandro Bartoloni Ulpia Elena Botezatu Timothy Cichan
National Insitute of Nuclear Physics - INFN — ITALY Romanian Space Agency (ROSA) — ROMANIA Lockheed Martin Corporation — UNITED STATES

D4.2 Contribution of Moon Village technologies and activities to Humanity Challenges

Moon Village is a concept that brings together efforts, world-wide, from the private sector, governments, academics and others to explore and use the Moon in a sustainable manner. Moon Village is a community of projects carried out by stakeholders from different fields (for example, technical, scientific, cultural, economic) working together. The implementation of the Moon Village has already started with missions and activities in line with its spirit, It is a major step forward for the peaceful development of humankind. Moon Village can offer a new start to humanity on the Moon and on the Earth by contributing to solve global societal issues. The session will discuss the contributions of the Moon Village to the solution of global challenges (e.g., energy, population, sustainable development, many others). How the Moon Village will support the understanding of the global societal issues and bring benefits to society on a global scale will also be discussed. The session will include also the identification of the related technologies that need to be developed. The definition of a roadmap complementary to the UN Agenda 2030 will be also discussed.

Co-Chairs Rapporteur
Giuseppe Reibaldi Xiaowei Wang Paivi Jukola

Moon Village Association (MVA) — AUSTRIA China Academy of Launch Vehicle Technology (CALT) — Aalto University — FINLAND CHINA

D4.3 The Modern Day Space Elevator as a Permanent Transportation Infrastructure

Recent research projects have progressed to the point where many segment level concepts should be initiating the engineering development stage. The engineering design process has five phases for such mega-projects: 1) define the problem, 2) expand the major segment concepts through brainstorming, 3) Create an initial solution with segment level designs, 4) Build prototypes of each of the segments for engineering testing, and 5) refine the design resulting in production ready segments. As the space elevator community has come together and conducted many of the functions of the first three steps, the next major activity should be to design, build, and test each of the segments of space elevator infrastructures. That would include the following segments: Earth Port, Tether Climber, Tether, Apex Anchor and Operations Center. Several of these segments have significant research results helping to prepare us for this new phase. Much of the research results are at the Body of Knowledge for Modern Day Space Elevators at www.isec.org. The next few years will result in several testing programs that will help refine the designs of each of these space elevator's five segments. This Congress session could address research in any of the five phases of development, with emphasis in preparing for testing and refinement of preliminary designs.

Co-Chairs Rapporteur

Peter SwanYoji IshikawaDaniel GriffinSpace Elevator Development Corporation — UNITEDObayashi Corporation — JAPANRoyal Institute of Technology (KTH) — SWEDEN

D4.4 Interstellar Exploration - Strategies, Capabilities and Opportunities

Interstellar space exploration – visiting another star—has engaged the intellect and imagination of people across time and the across globe. A sober, serious examination of achieving the scientific, technological, and societal capabilities required for interstellar flight—travel beyond our solar system to another star—reveals one undeniable fact—it is very, very difficult. The extreme challenges exist not only within a single discipline, for example, propulsion; revolutionary advances must be made across the range of human knowledge, skills and experience including biological and human social structures. New integrated systems and technologies must be contemplated. And this is exactly what imbues the interstellar journey with such compelling opportunities to benefit not only current space exploration, but also life here on Earth. Interstellar pushes us to think beyond the commonplace and small increments. This session seeks to define specific strategies, capabilities, technologies, and knowledge systems leading to major advances in areas such as: safe, reliable, propulsion and energy systems; life support, crew habitability and health; creation of viable star-bound space communities; enhanced robotics, automation, intelligent systems and equipment to use extra-terrestrial resources; opportunities for industry in space; navigation and computation; transfer of these advancements to benefit system that will lead the way to the stars; assess and evolve technologies like solar sails, laser propulsion, fusion engines that are on the horizon. Clearly this is list is incomplete and a key objective of the session is to also find the gaps. Papers presented in this session are expected to provide rigorous grounding, references and justification from existing fields of study from social sciences, physical sciences, life sciences, materials, computer sciences to arts and communication, governance, the marketplace, manufacturing – whether concepts are stepwise or discontinuous.

Co-Chairs Rapporteur

Giancarlo Genta — UNITED STATES 100 Year Starship — UNITED STATES Politecnico di Torino — ITALY

Space Resources, the Enabler of the Earth-Moon Econosphere D4.5

Space Resources are available on the Moon, Asteroids, Mars and other celestial bodies. Their utilization will have a key role in the future of humanity in general and for space exploration in particular. The first steps in the utilization of space resources will take placeon the Moon as approximately one hundred missions from around the world are planned to explore and utilize lunar resources. The effective use of space resources will require the establishment of an enabling environment for technological and regulatory developments. At the moment a few countries have enacted national laws regarding the use of space resourecs, but these norms are not recognized at the international level. The United Nations COPUOS has set up a working group to create a set of principles that will form the foundation for an agreed legal framework. The development of this framework is of paramount importance in order to attract investors in US, China and the rest of the world to fund space resource activities. This session seeks innovative ideas and concepts regarding the legal and technological issues arising from space resource activities as well as papers describing the state of the art of planned or ongoing resource activities. This session also seeks prospective investors to present concepts regarding the financing of space resource activity.

Co-Chairs Rapporteur

Mark Sundhal

Roger X. Lenard

LPS — UNITED STATES **Güneş Ünüvar**Moon Village Association (MVA) — Luxembourg Cleveland State University — UNITED STATES

D4.IP Interactive Presentations - 24TH IAA SYMPOSIUM ON VISIONS AND STRATEGIES FOR THE FUTURE

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Visions and Strategies for the Future addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts

Gongling Sun Helen Tung

NewSpace2060 — AUSTRALIA International Space University — FRANCE

59TH IAA SYMPOSIUM ON SAFETY, QUALITY AND KNOWLEDGE MANAGEMENT IN SPACE ACTIVITIES D5

Quality, safety, security... These domains reflect a same concern: how a complex space system can be developed and be operated to perform its functions at its best with the proper robustness. In that environment, where radiations are not the least stress and possible ill-intentioned actions may occur, decreasing the level of failures in space activities is a must. Knowledge management, meaning proper capturing, capitalising, protecting, and sharing the knowledge, and application of lessons learned and experience, are key factors. This Symposium organized by the international Academy of Astronautics aims at arousing the discussion between professionals and raising the awareness of the new generation on the various approaches to obtain and run reliable, and safe space systems: design solutions, validation and tests, software development, validation and security, methods, management approaches, regulations to improve the quality, efficiency, and collaborative ability of space programs and space operations. All aspects are considered risk management, complexity of systems and operations, knowledge and information management, human factors, economical constraints, international cooperation, norms, and standards.

Coordinators

Jeanne Holm Roberta Mugellesi-Dow

European Space Agency (ESA) — UNITED KINGDOM City of Los Angeles — UNITED STATES

D5.1 For a Successful Space Program: Quality and Safety!

Space is a difficult challenge, and no complex program can be successful without a creative and thoughtful approach to quality and safety! Relying on luck cannot be the only way to proceed! Beginners or veterans, for training, for science or for industry, for small or large programs, share your projects, methods, observations, analyses of successes or failures. This session deals with methods, tests, standards for the analysis and mitigation of the many risks to maintain the desired quality and required safety. It offers an opportunity to discuss all aspects of the life cycle (including design, development and production philosophy, operations) and the associated risk management approach. It concerns all types of space missions: transportation systems, orbital systems, exploration vehicles, and is also a management, manpower and education issue.

Co-Chairs

Alexander S. Filatyev Kaitlyn Holm

ov Moscow State University — RUSSIAN University of Pennsylvania — UNITED STATES

FEDERATION

D5.2 **Emerging Trends of Knowledge Management in Organizations**

Space activities reflect the needs of all our societies, regarding: feeding, protecting, educating, communicating, entertaining, etc. Knowledge as an answer, is therefore co-produced, researched, and exchanged between all stakeholders in the space ecosystem. Space activities offer an exceptional framework for observing a significant part of the KM landscape. This landscape is currently made up of: - The massive digitization of societies and organizations: cloud computing, new collaboration tools, intelligent search technologies, etc. The presence of artificial intelligence; particularly in its generative form; in an growing number of segments of value chains; the growing consideration of approaches that promote collective intelligence, communities of practice, and, more generally, the consideration of tacit knowledge in the service of innovation. Key themes addressed during the session are trends, innovations, concerns as well as practical challenges encountered, and solutions and technologies adopted in the field of Knowledge Management in Organisations to sustain, and invigorate the ability to learn, innovate, and share knowledge. The session aims to include case studies that demonstrate how KM strategies have been applied and the lessons learned, the challenges faced by the organizations, and innovative solutions that facilitates knowledge sharing and collaboration as well as search mechanisms.

Co-Chairs Rapporteur

Roberta Mugellesi-Dow Jeanne Holm **Daniel Galaretta** Centre National d'Etudes Spatiales (CNES) — FRANCE European Space Agency (ESA) — UNITED KINGDOM City of Los Angeles — UNITED STATES

D5.3 Prediction, Testing, Measurement And Effects Of Space Environment On Space Missions

The space environment can strongly impact the performance and reliability of space missions. It has several natural and induced components, including high-energy radiation, plasma, atomic oxygen, planetary dust, extreme temperature, vacuum, micro-gravity, micrometeoroid and debris, molecular and particulate contamination, etc. Environmental conditions yield constraints at design phase, and important risks in the course of the mission. The evaluation of the nominal and worst-case conditions to be met, mitigation and protection options, and of their impact on missions and flight systems are thus of prime importance. This session will encompass the following topics; Space Weather, Plasma, Spacecraft Charging, Radiation, Atomic Oxygen, Planetary Dust, Molecular and Particulate Contamination, Plume Induced Contamination Effects and Interactions, Combined Environments - flight measurements; - physical processes; - prediction of nominal or worst case condition; - ground testing; - flight experiments and lessons learned; - modelling and prediction; thermo optical degradation effects.

Co-Chairs Rapporteur

Henry de Plinyal Teppei Okumura

Office National d'Etudes et de Recherches Japan Aerospace Exploration Agency (JAXA) — JAPAN Boeing Integrated Defense Systems — UNITED STATES Aérospatiales (ONERA) — FRANCE

D5.IP

D6

D6.2

D6.IP

Rapporteur

D5 4 Cybersecurity in Space Systems, Risks and Countermeasures

In the past few years our society and economy have become largely dependent on information technology, computer networks, and IoT solutions. Managing cyber-related risks and protecting against cyberattacks is therefore a growing concern requiring the identification and deployment of relevant cybersecurity measures and solutions. This session covers several topics focused on cyber-security: tools & methods aiming at preventing & forecasting attacks, risk assessment and cyber intelligence, protecting systems, infrastructures and data, space-enabled solutions, making secure the use of satellite communications, earth observation and satellite navigation, addressing all the means to mitigate risks and raising awareness via specific training, information sharing and analysis, addressing new areas candidates for standardisation. New technologies and practices emerging in cybersecurity are also relevant such as the development of quantum cryptography and quantum key distribution, combining big data analytics, artificial intelligence and machine learning to analyse communications patterns and operations data. New trends include the development of cyber security test ranges and certification schemes specific to each domain of activities, to better identify threats and vulnerabilities and develop customised solutions.

Co-Chairs Julien Airaud Stefano Zatti

Nil Angli University of Rome "La Sapienza" — ITALY Centre National d'Etudes Spatiales (CNES) — FRANCE European Space Agency (ESA) — UNITED KINGDOM

Interactive Presentations - 59TH IAA SYMPOSIUM ON SAFETY, QUALITY AND KNOWLEDGE MANAGEMENT IN SPACE ACTIVITIES

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of safety, quality, cybersecurity, and knowledge management in space activities. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten-minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as powerPoint charts, embedded links, pictures, audio and video clips. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Roberta Mugellesi-Dow

 ${\it City of Los Angeles-UNITED STATES}$ European Space Agency (ESA) — UNITED KINGDOM

IAF SYMPOSIUM ON COMMERCIAL SPACEFLIGHT SAFETY ISSUES

Topics of this symposium, organized by the International Astronautical Federation (IAF), address commercial safety and regulatory policy issues for orbital and suborbital space transportation and spaceports. The goal is to identify issues common to commercial operators of both human and robotic space vehicles to increase international safety and interoperability.

Coordinator

Co-Chairs

Francesco Santoro Altec S.p.A. - ITALY

D6.1 Commercial Space Flight Safety and Emerging Issues

Topics for this session cover commercial space transportation and safety issues including human and robotic vehicles, spaceports, reentry vehicles, in-space transportation vehicles, and regulations. Papers related to commercial space transportation are also encouraged on: policy and law; operations and training; best practices and standards; pilot, crew and participant safety; and ground operations and launch site safety.

John Sloan Francesco Santoro Gennaro Russo Altec S.p.A. — ITALY Associazione Italiana di Aeronautica e Astronautica Federal Aviation Administration Office of Commercial

Space Transportation (FAA/AST) — UNITED STATES (AIDAA) — ITALY

Sustainable Approaches and Impact of Space Transportation Solutions on Earth + Space Environment and on General Safety This session is dedicated to the study of the impact of space transportation solutions on the earth and space environment and on the relevant safety aspects. This session can D2.9

address methodologies for life cycle analysis, environmental impact mitigation and assessment, sustainability, and eco-design for space transportation. It will also address new and emerging technologies for space transportation systems to mitigate the impact on the earth and space environments, yet guaranteeing Space and Ground Safety.

Co-Chairs Rapporteur

Charles E. Cockrell Jr. Francesco Santoro Shana Diez National Aeronautics and Space Administration (NASA)
— UNITED STATES SPACEX — UNITED STATES Altec S.p.A. - ITALY

D6.3 **Enabling Safe Commercial Spaceflight: Vehicles and Spaceports**

This session addresses new and existing spaceports and factors that launch vehicle and spaceplane operators may use in evaluating the selection of a launch and/or landing location. Topics include: safety, air and spaceport facilities, runways, geography, air and space traffic, weather, population density, access to workforce and technical support customer needs, regulations, and other areas. Papers are welcome from spaceports, airports, space transportation providers, support equipment providers, academia, commercial companies and governments.

Gennaro Russo Francesco Santoro Federal Aviation Administration Office of Commercial Associazione Italiana di Aeronautica e Astronautica Altec S.p.A. - ITALY Space Transportation (FAA/AST) — UNITED STATES (AIDAA) — ITALY

Interactive Presentations - IAF SYMPOSIUM ON COMMERCIAL SPACEFLIGHT SAFETY ISSUES

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Commercial Spaceflight Safety Issues addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the D Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Francesco Santoro Altec S.p.A. — ITALY

SPACE AND SOCIETY

Interaction of space with society, including education, policy and economics, history, space security and law, and emerging space

- E1 IAF SPACE EDUCATION AND OUTREACH SYMPOSIUM
- **E2 53RD STUDENT CONFERENCE**
- 38TH IAA SYMPOSIUM ON SPACE POLICY, REGULATIONS AND ECONOMICS **E3**
- **E4** 59[™] IAA HISTORY OF ASTRONAUTICS SYMPOSIUM
- E5 36TH IAA SYMPOSIUM ON SPACE AND SOCIETY
- **E6** IAF BUSINESS INNOVATION SYMPOSIUM
- **E7** IISL COLLOQUIUM ON THE LAW OF OUTER SPACE
- F8 IAA MULTILINGUAL ASTRONAUTICAL TERMINOLOGY SYMPOSIUM
- IAF SYMPOSIUM ON SECURITY, STABILITY AND SUSTAINABILITY OF SPACE ACTIVITIES E9
- IAF SYMPOSIUM ON PLANETARY DEFENSE AND NEAR-EARTH OBJECTS E10
- E11 IAF SYMPOSIUM ON EMERGING SPACE ECOSYSTEMS

Category coordinated by Pascale Ehrenfreund, The George Washington University / COSPAR - AUSTRIA

E1 IAF SPACE EDUCATION AND OUTREACH SYMPOSIUM

This symposium, organized by the International Astronautical Federation (IAF) Space Education and Outreach Committee (SEOC), explores best practices and innovative approaches to space education and outreach at all levels. Through its sessions, the symposium showcases activities, methods and techniques for education, outreach to the general public, and workforce development. • The symposium keynotes, including the one by the winner of the IAF Frank J. Malina Astronautics Medal, highlight some of the best education and outreach programs from around the world. • When submitting abstracts for this symposium, please note that: • Abstracts should present a coherent story or idea, and follow a logical sequence. • The work should be the original work of the authors. • It should share information that is innovative and new or put a new spin on an old subject. The novelty can be in idea, methodology and approach, or in results and recommendations. • Papers should have clear education or outreach content. They should also be in the scope of the session they are submitted to. • Authors are encouraged to clearly identify target groups, benefits, lessons-learned, recommendations and include measures of critical assessment. Abstracts providing technical details of projects, even if carried out in an educational context, will not usually be accepted. Preference is given to papers which present the pedagogical theories behind the work presented. • Papers reporting on programmes/activities that have already taken place and evaluated will be given preference over papers dealing with concepts and plans for the future. • Papers covering topics/activities which have been reported at a prior IAC must state this explicitly and detail both the additional information to be presented and the added value that this represents.

Coordinator

Remco Timmermans

International Space University (ISU) — UNITED

E1.1 Lift Off: Primary and Secondary Education

This session will explore innovative programmes and curricula focusing on space education and outreach to students up to the age of 18. Emphasis will be placed on programmes that effectively engage primary and secondary school students in Science, Technology, Engineering, Arts and Mathematics (STEAM), help them develop key skills, and foster a long-term passion for space. This session will also consider programmes and activities that focus on the professional development of primary and secondary school teachers, or on educational methodologies of relevance to primary and secondary education. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs Rapporteurs

Kaori Sasak **Kerrie Dougherty** Japan Aerospace Exploration Agency (JAXA) — JAPAN - AUSTRALIA

Alina Vizireanu

Space Generation Advisory Council (SGAC) — UNITED . KINGDOM

E1.2 Space for All: Promoting Inclusive Practices in Space Exploration

This session will showcase and provide examples of solutions via education, culture and outreach activities as well as Belonging, Accessibility, Diversity, Equity, Justice and Inclusivity (BADEJI, EDI, DEIA) protocols in the workplace, organisations and space agendas. Learnings and recommendations from the perspectives of professionals, scholars, experts, educators, artists and cultural institutions including museums, space agencies and non-profit organisations will be included. From code of ethics to pluralistic commitments towards achieving equity and accessibility, all relevant methodologies and formats are welcomed. This session is a showcase of demonstrated practices and/or experiential learning, and work presented should already have been implemented before the presentation. When submitting abstracts for this session, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity, • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs

Nelly Ben Hayoun-Stépanian SETI Institute — UNITED KINGDOM Asanda Ntisana

South African National Space Agency (SANSA) — SOUTH AFRICA

Rapporteur

Valerie Anne Casasanto NASA Goddard/University of Maryland, Baltimore County (UMBC) — UNITED STATES

E1.3 On Track: Undergraduate Space Education

This session will explore innovative space education and outreach programmes for undergraduate students. This can include the development and delivery of innovative courses, project-based work, and work placements. Emphasis should be placed on how the programme is structured for maximum impact, how the impact is measured and how the lessons learned are being applied to other courses. This session will also consider programmes and activities that focus on the professional development of undergraduate educators, or on educational methodologies of relevance to undergraduate education. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community.
• State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chair European Space Agency (ESA) — THE NETHERLANDS

Alev Sönmez

Rapporteurs

Fraunhofer Alliance Space — GERMANY

Ozan Kara

gy Innovation Institute (TII) — UNITED ARAB **EMIRATES**

F1.4 In Orbit: Postgraduate Space Education

Christopher Vasko

This session will explore innovative space education and outreach programmes for postgraduate students. This can include the development and delivery of innovative courses, project-based work, and work placements. Emphasis should be placed on how the programme is structured for maximum impact, how the impact is measured and how the lessons learned are being applied to other courses. This session will also consider programmes and activities that focus on the professional development of postgraduate educators, or on educational methodologies of relevance to postgraduate education. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Manuela Aguzzi Space Applications Services — BELGIUM Sandra Haeuplik-Meusburger Technische Universität Wien (TU Wien) — AUSTRIA **David Spencer**

The Aerospace Corporation — UNITED STATES

Rapporteurs

Victor Baptista Ideia Space — BRAZIL

Enabling the Future: Developing the Space Workforce

This session will focus on the challenges, opportunities and innovative approaches to developing the current and future global space workforce. The work presented in this session may include but is not limited to formal professional development and accreditation programmes and professional development activities by companies, nonprofits and other actors. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs

Kathleen Coderre

Lockheed Martin (Space Systems Company) — UNITED

Kathryn Robison The University of Sydney — AUSTRALIA

E1.6

E1.5

Calling Planet Earth: Large Engagement and Communications Initiatives

This session will highlight activities, programmes and strategies for communicating with and engaging the general public in space activities. Topics should involve outreach outside the formal education system with demonstrated or projected reach in the many thousands or millions. Presentations in the session focus on measurable outcomes and demonstrate the strategic nature and thinking in the design of the work. Presenters will be expected to show objective assessment of results or thoroughly describe the design of their evaluation plans. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs

Remco Timmermans

International Space University (ISU) — UNITED KINGDOM

Alina Vizireanu

Space Generation Advisory Council (SGAC) — UNITED . KINGDOM

Rapporteurs

Chloé Carrière

Milica Milosev Ecole Polytechnique Fédérale de Lausanne (EPFL) — Econnects — SERBIA

E1.7

Sending out a Signal: Innovative Outreach and Communications Initiatives

This session will highlight non-traditional, inventive, innovative, and new types of outreach activities, programmes and strategies for engaging audiences general public in space activities, outside the formal education system, with demonstrated outcomes. This could involve new outreach strategies, tactics, or storytelling mechanisms, new audiences, or using new technologies. The session will focus on results and evaluation of the activity, if it has been completed, or a thorough description of the expected outcomes of the activity. Presenters will provide information about how participants/audience were drawn to the activity (e.g., how it was promoted or disseminated). When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs

Vera Mayorova

Bauman Moscow State Technical University — RUSSIAN FEDERATION

Olga Zhdanovich Modis — THE NETHERLANDS

Rapporteurs

Carol Christian STScI — UNITED STATES

Kaori Sasaki

Japan Aerospace Exploration Agency (JAXA) — JAPAN

E1.8 Show Us Space: Demonstration of Hands On Education and Outreach

Presenters in this session will demonstrate effective hands-on activities and experiments to explore, teach and reinforce space-related concepts. Hands-on space education and outreach is a powerful way to introduce and teach space concepts and Science, Technology, Engineering, Arts and Math (STEAM) concepts, especially with diverse learners. During the session, presenters will not only present the ideas behind the activity, but also physically demonstrate it hands-on and engage the session audience at the IAC. Note: A physical in-person demonstration of the activity is mandatory for this session. If you would like to make a presentation only, please submit your abstract to a different session. Submissions that cannot be physically demonstrated on-site (for example CubeSats) will be rejected. When submitting abstracts for SEOC sessions, please: • Clearly identify the hands-on nature of the work presented, how the audience at the IAC will sample this work, and its space connection. • Include any special technical requirements you will need for your demonstration such as "live webcam connection to remote location", "four long tables for audience members to gather around to build a model", or "ability to be near a window to view the sky for the demonstration." • Clearly identify the connection to the session's described scope and to space. • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data g

Co-Chairs

Lvn Wigbels

American Astronautical Society (AAS) — UNITED STATES

Valerie Anne Casasanto

NASA Goddard/University of Maryland, Baltimore County (UMBC) — UNITED STATES

Rapporteurs

Remco Timmermans

International Space University (ISU) — UNITED

Marcos Eduardo Rojas Ramirez

Space Generation Advisory Council (SGAC) — FRANCE

E1.9 Space Culture: New Processes of Public Engagement in Space through Culture and Art

This session will focus on the education and outreach activities of institutions such as museums, space agencies, non-profit organisations and individual contributions, which link space with culture, humanities and critical thinking. This session will specifically look at papers elaborating on new and original processes used in public engagement through culture and art. Presenters will be required to explain how their projects informed critical reflection and what mechanics in public engagement through culture and art were used to allow it. When submitting abstracts for SEOC sessions, please: • Clearly identify the connection to the session's described scope and to space • Briefly describe what you will present, including results and evaluation of your work, if it has been completed, or a thorough description of the expected outcomes of the work. • Include information about what makes your work unique, original or innovative and worth sharing with the international space community. • State your work's goal, the intended audience, the measurable objectives that were set, and if the work is in planning or has already occurred. • Provide context describing the research and/or analysis you conducted in choosing the purpose of the activity, the intended audience, and the design of the activity. • Include reference to quantitative or qualitative data gathered through evaluations, surveys or other means. • If any theories are developed, please include information about the practical applicability of the information. • Consider that your audience is international and focus on what others working in the field can learn from your work. Include lessons learned, recommendations or other takeaway messages. • Make sure that the abstract provides a coherent idea or narrative for someone unfamiliar with your work.

Co-Chairs

Nelly Ben Hayoun-Stépanian
SETI Institute — UNITED KINGDOM

Daniela De Paulis

SETI Institute — THE NETHERLANDS

Rapporteurs

Aoife van Linden Tol
European Space Policy Institute (ESPI) — UNITED

Kerrie Dougherty

— AUSTRALIA

Swetha Kotichintala

Exobotics Ltd — UNITED KINGDOM

KINGDOM

Interactive Presentations - IAF SPACE EDUCATION AND OUTREACH SYMPOSIUM

This session offers a unique opportunity to share your education and outreach activities through an interactive presentation on any of the subjects of the symposium. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations presented by the authors will be assigned a ten-minute slot to present the topic and interact with the attendees present. The Interactive Presentation may take advantage of digital capabilities, including Powerpoints, embedded hyperlinks, pictures, audio and video clips. An award will be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. When submitting abstracts for this session, please: Provide context describing the research and/or analysis you conducted when choosing the purpose of the activity, targeting an audience, and designing the activity. Clearly state the goal of the activity, the intended audience, the measurable objectives that were set, and if the activity is in planning or has already occurred. Provide a short but clear description of the activity or the programme. Include information about anything that makes the activity unique, original or innovative. Provide information about how your participants/audience were drawn to the activity (e.g., how it was promoted or disseminated). Set up the analysis you'll provide in your presentation, which should include results and evaluation of the activity, if it has been completed, or a thorough description of the expected outcomes of the activity. You will be expected to assess results against your measurable objectives that indicate if your goal was met. Include your top-level lessons learned, best practices, recommendations for future activities, practical applicability of theoretical work, or other takeaway findings.

Co-Chairs

Scott Madry
International Space University (ISU) — UNITED

Eberhard Gill

Delft University of Technology — THE NETHERLANDS

STATES

54TH IAF STUDENT CONFERENCE

 $Presentation \ of space-related \ papers \ by \ undergraduate \ and \ graduate \ students \ who \ participate \ in \ an \ international \ student \ competition.$

Co-Chair Emmanuel Zenou

(ISAE) — FRANCE

Coordinators

Institut Supérieur de l'Aéronautique et de l'Espace

Franco Bernelli-Zazzera
Politecnico di Milano — ITALY

Marco Schmidt
University Wuerzburg — GERMANY

E2.1

E2

E1.IP

Student Conference – Part 1

Undergraduate and graduate level students (no more than 28 years of age) present technical papers on any project in space sciences, industry or technology. These papers will represent the specific work of the author(s) (no more than two students). The students presenting in this session will compete in the 54th International Student Competition. This session is NOT for team projects. Team project papers should be submitted to session E2.3. To accommodate for the different national education schemes, the distinction between undergraduate and graduate students is based uniquely upon the number of years of university education, as follows: - undergraduate students: students who did their work within the 4th year at university level, for instance a Bachelor thesis. - graduate students: students who did their work from the 5th year at university level, for instance a Master thesis. If appropriate, faculty members that advised students during the preparation of their work can be listed as a co-author (never as a first author) and their status of advisors must be clearly indicated. Principle responsibilities for a submitted student conference paper fall with the student author/s and as such they must be listed first. The content of the paper should mainly reflect the contribution of the student. Faculty co-authors cannot present the paper or answer questions at the student conferences. The selection of the oral presentations is solely based on the submitted abstracts. We strongly recommend that you submit an abstract with an extensive description of your topic, including a detailed explanation of your contribution and the novelty of your work. French, German, US and UK students submitting abstracts for the sessions E2.1 and E2.2 will be forwarded to the corresponding national competition coordinators. The following contact persons are available for more information: For the French national competition: Emmanuel Zenou — emmanuel Zenou@isae-supaero.fr For the German national competition: Marco Schmidt — marco.schmidt@un

Co-Chairs

Franco Bernelli-Zazzera Politecnico di Milano — ITALY **Emmanuel Zenou**

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE) - FRANCE

Rapporteur

Ioana-Roxana Perrier

nstitute of Polytechnic Science and Aeronautics (IPSA) – **FRANCE**

F2.2 Student Conference – Part 2

Undergraduate and graduate level students (no more than 28 years of age) present technical papers on any project in space sciences, industry or technology. These papers will represent the specific work of the author(s) (no more than two students). The students presenting in this session will compete in the 54th International Student Competition. This session is NOT for team projects. Team project papers should be submitted to session E2.3. To accommodate for the different national education schemes, the distinction between undergraduate and graduate students is based uniquely upon the number of years of university education, as follows: - undergraduate students: students who did their work within the 4th year at university level, for instance a Bachelor thesis. - graduate students: students who did their work from the 5th year at university level, for instance a Master thesis. If appropriate, faculty members that advised students during the preparation of their work can be listed as a co-author (never as a first author) and their status of advisors must be clearly indicated. Principle responsibilities for a submitted student conference paper fall with the student author/s and as such they must be listed first. The content of the paper should mainly reflect the contribution of the student. Faculty co-authors cannot present the paper or answer questions at the student conferences. The selection of the oral presentations is solely based on the submitted abstracts. We strongly recommend that you submit an abstract with an extensive description of your topic, including a detailed explanation of your contribution and the novelty of your work. French, German, US and UK students submitting abstracts for the sessions E2.1 and E2.2 will be forwarded to the corresponding national competition coordinators. The following contact persons are available for more information: For the French national competition: Emmanuel Zenou emmanuel.zenou@isae-supaero.fr For the German national competition: Marco Schmidt – marco.schmidt@uni-wuerzburg.de For the US national competition - Merridith Kauten - merridithk@aiaa.org For the UK national competition: Fabrizio Bernardini - iac_comp@bis-space.com Paper accepted for the competition and the presentations will be evaluated along the following criteria: Technical Content, Originality, Practical Application, General Presentation, Knowledge of the Subject.

Co-Chairs Rapporteur

Marco Schmidt University Wuerzburg — GERMANY

Ioana-Roxana Perrier Institute of Polytechnic Science and Aeronautics (IPSA) — FRANCE

Emmanuel Zenou

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE) - FRANCE

E2.3 GTS.4

Student Team Competition

Undergraduate and graduate level student teams (students no more than 28 years of age) present papers on any subject related to space sciences, industry or technology. These papers will represent the work of the authors (three or more students). Students presenting in this session will compete for the Hans von Muldau Team Award. If appropriate, faculty members that advised students during the preparation of their work can be listed as a co-author (never as a first author) and their status of advisors must be clearly indicated. Principle responsibilities for a submitted student conference paper fall with the student authors and as such they must be listed first. The content of the paper should mainly reflect the contribution of the students. Faculty co-authors cannot present the paper or answer questions at the student conferences. The selection of the oral presentations is solely based on the submitted abstracts. We strongly recommend that you submit an abstract with an extensive description of your topic, including a detailed explanation of your contribution and the novelty of your work. Furthermore, a short description how your team worked together to achieve the project goal should be included. Paper accepted for the competition and the presentations will be evaluated along the following criteria: Technical Content, Originality, Practical Application, General Presentation, Knowledge of the Subject.

Co-Chairs

Emmanuel Zenou stitut Supérieur de l'Aéronautique et de l'Espace (ISAE) — FRANCE

Franco Bernelli-Zazzera

Politecnico di Milano — ITALY

Rapporteur

Kathleen Coderre Lockheed Martin (Space Systems Company) — UNITED STATES

E2.4 **Educational Pico and Nano Satellites**

Joint session with SUAC. The session covers all aspects related to educational small satellites.

Xiaozhou Yu

Dalian University of Technology (DUT) — CHINA

Franco Bernelli-Zazzera Politecnico di Milano — ITALY

Centre for Mechanical and Aerospace Science and Technologies (C-MAST) — PORTUGAL

Igor V. Belokonov

Samara National Research University (Samara University) — RUSSIAN FEDERATION

E2.IP.

Interactive Presentations - 54TH IAF STUDENT CONFERENCE

This session offers a unique opportunity to share your education and outreach activities through an interactive presentation on any of the subjects of the symposium. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations presented by the authors. Authors will be assigned a ten-minute slot to present the topic and interact with the attendees present. The Interactive Presentation may take advantage of digital capabilities, including Powerpoints, embedded hyperlinks, pictures, audio and video clips. An award will be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. When submitting abstracts for this session, please: Provide context describing the research and/or analysis you conducted when choosing the purpose of the activity, targeting an audience, and designing the activity. Clearly state the goal of the activity, the intended audience, the measurable objectives that were set, and if the activity is in planning or has already occurred. Provide a short but clear description of the activity or the programme. Include information about anything that makes the activity unique, original or innovative. Provide information about how your participants/audience were drawn to the activity (e.g., how it was promoted or disseminated). Set up the analysis you'll provide in your presentation, which should include results and evaluation of the activity, if it has been completed, or a thorough description of the expected outcomes of the activity. You will be expected to assess results against your measurable objectives that indicate if your goal was met. Include your top-level lessons learned, best practices, recommendations for future activities, practical applicability of theoretical work, or other takeaway findings.

Co-Chairs

Franco Bernelli-Zazzera Politecnico di Milano - ITALY **Marco Schmidt**

University Wuerzburg — GERMANY

F3

39[™] IAA SYMPOSIUM ON SPACE POLICY, REGULATIONS AND ECONOMICS

This Symposium, organized by the International Academy of Astronautics (IAA), will provide overview of the current trends in space policy, regulations and economics, by covering national as well as multilateral space policies and plans. The symposium also integrates the IAA/IISL Scientific-Legal Roundtable

Jacques Masson

NETHERIANDS

Pieter Van Beekhuizen Stichting Space Professionals Foundation (SSPF) — THE

European Space Agency (ESA) — THE NETHERLANDS

E3.1

International Cooperation In Using Space For Sustainable Development: The "Space2030" agenda

With the growing societal impacts of space technology and its applications, the international community has shifted its attention to their contributions to the global sustainability and development agendas, in particular, the achievement of the Sustainable Development Goals (SDGs). In this context, the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS) developed the "Space2030" agenda and its implementation plan, which were adopted by the United Nations General Assembly in 2021. This session provides an opportunity to discuss how international cooperation in space activities can effectively contribute to sustainable development, in particular, Space 2030 agenda and the SDGs. It also addresses how far we have already come in using space technology and its applications in support of the sustainable development, where we are still facing challenges and gaps, and what additional actions could be taken towards a sustainable future.

Ikuko Kuriyama Institute for Future Initiatives (IFI), The University of

Tokyo — JAPAN

Werner R. Balogh

European Space Agency (ESA) — FRANCE

F3.2 The Future of Space Exploration and Innovation

Space exploration missions and plans have been emerging around the world, targeting different destinations from LEO, to the Moon and Mars, and with an increasing participation of new public and private actors. The session will focus on the current plans of future exploration missions of various space exploration stakeholders and will provide a forum to reflect on the trends and present the latest developments in the field.

Nicolas Peter

Claudiu Mihai Taiatu

Rapporteur

Marc Haese DLR, German Aerospace Center — GERMANY

European Space Agency (ESA) - FRANCE

International Space University (ISU) — FRANCE

E3.3 Economic Resilience and the Space Economic/Industrial Sector

Objective: The Space Economy Committee invites researchers, industry professionals, policymakers, and scholars to submit paper abstracts that align with the economic dimensions of building economic resilience within the space sector, focusing on how the sector can adapt and thrive in the face of global economic uncertainties and disruptions. This session seeks to foster a deeper understanding of the strategies and mechanisms that ensure the continuity and growth of space activities, even under challenging conditions. Context: Resilience refers to the ability of the space economy and its associated activities, industries, and institutions to withstand, adapt to, and recover from disruptions, challenges, or shocks from unforeseen events. Submissions should address the following areas: - Definitions, measurement issues, and models/methods for analyzing the resilience of the space economy. - Data-driven approaches to understanding and enhancing the resilience of the space economy. - Case studies on how space missions or programs have adapted to or mitigated economic disruptions - Emerging markets and opportunities that enhance the resilience of the space economy. - Impact of new technologies (e.g., quantum computing, Al) on the resilience of the space economy. - Forecasting future economic trends in the space sector and their potential impacts on global economic resilience. Submission Guidelines: • Abstracts should be concise, clearly outlining the research question, methodology, key findings, and relevance to the theme "Economic Resilience of the Space Sector." • The submission should highlight the novelty and contribution of the work to the existing body of knowledge on economic resilience in the space economy. • Collaborations with organizations outside the traditional space community are encouraged to bring diverse perspectives and innovative approaches.

Co-Chairs

Pieter Van Beekhuizen

Henry Hertzfeld

Stichting Space Professionals Foundation (SSPF) — THE NETHERLANDS

Space Policy Institute, George Washington University —

Rapporteurs

Luigi Scatteia

Bhavya Lal

PricewaterhouseCoopers Advisory (PwC) — FRANCE

National Aeronautics and Space Administration (NASA) —

UNITED STATES

E3.4 Assuring a Safe, Secure and Sustainable Space Environment for Space Activities

The space environment today involves a growing number of states, government consortia, and private sector entities with different strategic objectives and levels of economic and technological development. It is the responsibility of these actors to promote a secure, stable, and resilient environment in order to ensure uninterrupted access to space and security of space operations in Earth's orbits and beyond, especially as space systems now support day-to-day civilian and commercial life in many countries, enabling socioeconomic prosperity. A number of established spacefaring nations have developed national policies and strategies to address these concerns. At a multilateral level, a body of principles and rules governing space activities was established during the second half of the twentieth century. However, the rapid pace of the development, testing, and fielding of various launch technologies, as well as on-orbit systems for terrestrial support and exploration of the cis-lunar orbit and beyond, brings unprecedented challenges to all space operators. It is the purpose of this session to seek to address them.

Rapporteur

Peter Stubbe German Aerospace Center (DLR) — GERMANY Jana Robinson The Prague Security Studies Institute — CZECH REPUBLIC

Gina Petrovici German Space Agency — GERMANY

40[™] IAA/IISL Scientific Legal Roundtable: The Growing Roster of Space Countries

Invited papers only. Since 1957, the legal and scientific framework for outer space has evolved through three distinct stages. The first stage, dominated by government programs from the Soviet Union and the United States, expanded in the 1970s to include agencies from Europe, Japan, India, and China. The second stage began in the 1980s with the entry of commercial entities, supported by major space powers. We are now in the third stage, characterized by the emergence of new governmental and commercial space programs from over 120 countries, such as India and the UAE's Mars missions and the 2025 establishment of the African Space Agency, collaborating closely with commercial partners, much like their predecessors. This increasing diversity and congestion in space have forced governance to adapt. Early space activities were largely governmental and well-suited to the formal treaties of the 1960s and 70s. However, the current mix of nations, missions, and technologies has challenged these "hard" treaty laws. As a result, there's a shift toward more flexible, non-binding guidelines, like the UNCOPUOS Long-Term Sustainability Guidelines and the Artemis Accords. This evolution in the space community also raises new scientific and ethical questions about exploration methods and the search for extraterrestrial life. The 40th Scientific/Legal Roundtable will address these challenges.

Rene Laufer Luleå University of Technology — SWEDEN Rainer Sandau

International Academy of Astronautics (IAA) — GERMANY

Rapporteurs

Nicola Rohner-Willsch Deutsches Zentrum für Luft- und Raumfahrt e.V. Ivan Fino

Space Generation Advisory Council (SGAC) — ITALY

(DLR) — GERMANY

Industrialization as a Catalyst for Competitiveness

As the space sector evolves, industrialization emerges as a key enabler of global competitiveness. This session will examine how scalable, standardized, and cost-efficient production methods are transforming the industry by reducing unit costs, accelerating delivery timelines, and enhancing reliability. This session intends to analyse the ways in which industrialization not only drives down costs but also strengthens the resilience and global positioning of space enterprises to meet growing market demands. Additionally, it is expected that the panel discussion and presented papers will highlight the roles and initiatives undertaken or to be undertaken by Space Agencies and Industry in advancing industrialization within the sector.

Christine Klein

Henry Hertzfeld Space Policy Institute, George Washington University — Rapporteur Karina Miranda Sanchez

European Space Agency (ESA) - THE NETHERLANDS

F3.IP

E3.6

E3.5

F7.6

UNITED STATES Interactive Presentations - 39TH IAA SYMPOSIUM ON SPACE POLICY, REGULATIONS AND ECONOMICS

Authors with an abstract accepted for an interactive presentation will be asked to prepare slides and display them for the duration of the congress on plasma screens. Authors will be assigned to interactive sessions in which they must be near plasma screens to engage in interactive discussions with other congress attendees

Co-Chairs

Jacques Masson

Franziska Knur

European Space Agency (ESA) — THE NETHERLANDS

European Space Agency (ESA) — FRANCE

German Aerospace Center (DLR) — GERMANY

E4

60TH IAA HISTORY OF ASTRONAUTICS SYMPOSIUM

The symposium covers the entire spectrum of space history, at least 25 years old. History of space science, technology & development, rocketry, human spaceflight and personal memoirs are included. This year a special focus is laid upon historical developments in Türkiye and the Middle East.

Coordinators A. Ingemar Skoog - GERMANY

Otfrid G. Liepack

Sandra Haeuplik-Meusburger

Propulsion Laboratory — UNITED STATES

National Aeronautics and Space Administration (NASA), Jet Technische Universität Wien (TU Wien) — AUSTRIA

Karlheinz Rohrwild

- GERMANY

F4.1 **Memoirs & Organizational Histories**

Autobiographical & biographical memoirs of individuals who have made original contributions to the development & application of astronautics & rocketry. History of government, agencies, industrial, academic & professional societies & organisations long engaged in astronautical endeavors. This will include the entire spectrum of space history, at least 25 years old

Karlheinz Rohrwild Kerrie Dougherty Sandra Haeuplik-Meusburger - AUSTRALIA Technische Universität Wien (TU Wien) — AUSTRIA - GERMANY

Rapporteurs

Klaus Schilling

Olga Dubrovina University of Padua — ITALY Zentrum für Telematik — GERMANY

Organizational, Scientific and Technical Histories E4.2

The symposium will cover the history of space science, exploration, innovation & technology. Furthermore reflection on the cultural and socio-political impact are parts of it. This will include the entire spectrum of space history, at least 25 years old.

Co-Chairs

Sandra Haeuplik-Meusburger **Vera Pinto Gomes**

Technische Universität Wien (TU WIEN) — AUSTRIA European Commission — BELGIUM

Hannes Mayer Randy Liebermann Steve Salmon

Karl Franzens Universität Graz — AUSTRIA The British Interplanetary Society — UNITED KINGDOM

E4.3 History of Türkiye and Middle-East Contribution to Astronautics

This Session will focus on the history of Türkiye and the Middle-East in space, including topics on space programs, technical contributions, political influences and effects, space science activities, space architecture, and social and cultural influences. Contributions must address events that occurred at least 25 years ago.

Co-Chair

Karlheinz Rohrwild Otfrid G. Liepack

- GERMANY National Aeronautics and Space Administration (NASA), Jet

Propulsion Laboratory — UNITED STATES

Rapporteurs

Gurbir Singh Philippe Cosyn

Independent scholar — BELGIUM The British Interplanetary Society — UNITED KINGDOM

Interactive Presentations - 60TH IAA HISTORY OF ASTRONAUTICS SYMPOSIUM E4.IP

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of the history of astronautics addressed in the classic Sessions. The IP session is not restricted to any specific topic related to space law and invites authors to contribute presentations on any interesting, relevant and current space law issues. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinator

Otfrid G. Liepack

National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory — UNITED STATES

37TH IAA SYMPOSIUM ON SPACE AND SOCIETY **E5**

This 37th symposium is organized by the International Academy of Astronautics (IAA). Presentations will review the impact and benefits of space activities on the quality of life on Earth and in space. A broad range of topics may be covered including arts and culture, space architecture, and society's expectations from space exploration and research, as well as technology and knowledge transfer

Coordinators

Olga Bannova Randy Liebermann University of Houston — UNITED STATES UNITED STATES

Space Architecture: Habitats, Habitability, and Bases F5.1

Space Architecture integrates all topics related to designing and building human environments for use in space. The session welcomes papers in three areas: 1) research, design, prototype testing, manufacture, and operation of habitats for space and analog terrestrial environments; 2) how habitats influence human health, psychology, and efficiency, and requirements based on the "human factor": 3) fabrication and construction of habitable complexes on planetary surfaces or in orbit and 4) human systems integration design implications.

Olga Bannova Anna Barbara Imhof

University of Houston — UNITED STATES Liquifer Systems Group (LSG) — AUSTRIA

Rapporteurs

Anne-Marlene Rüede

Mich Lin

Ecole Polytechnique Fédérale de Lausanne (EPFL) — Massachusetts Institute of Technology (MIT) — UNITED **SWITZERLAND** STATES

Is Space R&D Truly Fostering A Better World For Our Future? F5.2

This session solicits papers for a panel discussion focusing on the distinct benefits to society from products derived from space research and development (R&D). The goal of this session is to examine and discuss cases of both emerging and established goals, best practices, and associated outcomes of knowledge sharing, technology transfer, and technology commercialization programmes as they relate specifically to societal benefits. Presenters will identify distinctive ways their organizations are promoting the relevance of space R&D to diverse societies. Attendees will develop a broader awareness of how they can also identify and promote the benefits of space R&D in order to influence broader support of space R&D investments. Panel Members are asked to introduce novel practices which: - Increase attendee understanding of how innovations resulting from space R&D have changed, and will continue to change, the world. - Promote productive thinking about optimizing space R&D investments in order to maximize societal benefits. - Increase the understanding of technology transfer policies and practices for both space and non-space utilization. - Demonstrate the correlation and synergies between technology transfer and STEM education for interdisciplinary space careers and technical entrepreneurship. - Measurably demonstrate the impact of innovation derived from space R&D when transferred into new products, services and processes

Olga Bannova University of Houston — UNITED STATES Nona Cheeks

Retired NASA — UNITED STATES

Rapporteur

Kerry Leonard

National Aeronautics and Space Administration (NASA), Goddard Space Flight Center — UNITED STATES

E5.3 Contemporary Arts Practice and Outer Space: A Multi-Disciplinary Approach

Since the late 1970s a number of artists have been negotiating access to space facilities and organisations, critiquing or making experiential the exploration and utilisation of space, or re-purposing space technology, materials or data independently or in direct exchange with the space sector. Today this important practice is branching into a several directions, ranging from performance, installation, video, or conceptual work situated in space or space analogous environments themselves, to commercial gallery contexts and the realm of participation and public engagement with science. This session addresses the practice of contemporary artists who have developed new ways to appropriate space for their work, the conceptual and practical foundations of their engagement, and the implications of this emerging aesthetic paradigm for both the fields of space and art. Submissions are welcome from artists and art historians, and from space industry and space agency representatives as well as from the cultural sector facilitating or programming related -projects crossing over the increasingly blurred boundaries of creative practice.

Co-Chairs Rapporteur

Richard Clar Yuri Tanaka Tibor Balint

Art Technologies — UNITED STATES European Organization for Nuclear Research (CERN) — International Academy of Astronautics (IAA) — UNITED SWITZERI AND STATES

E5.4 Space Assets and Disaster Management

This session will explore the role space assets can play in situations requiring disaster management and emergency response. Papers will discuss how space assets and applications can be brought to bear to assist with situation monitoring and assessment, shortening response times and mitigating impact on affected populations.

Co-Chairs

Vittorio Netti Jillianne Pierce

Astradyne s.r.l. — ITALY Space Florida — UNITED STATES

E5.5 Sharing Space Achievements and Heritage: Space Museums And Societies

Space societies, professional associations and museums form a special and important group of IAF members - nearly one quarter of the membership and, as a sector, second in size after space industries. They include professional societies, space museums, space associations, non-profit organizations and other organizations interested in space activities. Some have a large membership of 10 000 or more, others can be small; a few are already a century old, others are just being created. They exist in traditional and emerging space nations. Together they champion the interests of an impressive number of individuals and organizations connected to space. Space Museums are the visible face of space for most of the general public. This symposium offers a podium for ideas and proposals to enhance the interaction between the organizations, their members and the Federation. Papers may address proposals to exchange experiences and best practices; sharing articles, exhibitions or educational material; novel ideas to help outreach to the general public, etc. Of particular interest are papers exploring ways to foster communication and collaboration and to develop mutual benefits amongst young societies, representatives of emerging space nations and museums within and outside the IAF family.

Co-Chairs

Jean-Baptiste Desbois Ines Prieto

SEMECCEL Cité de l'Espace — FRANCE SEMECCEL Cité de l'Espace — FRANCE

E5.6 Simulating Space Habitation: Habitats, Design and Simulation Missions

This session covers all topics related to preparing for and simulating future extra-terrestrial habitats and its associated facilities. This includes lessons learned as well as experimental and concrete design proposals for future habitats, either orbital or surface structures, from analog programs to XR solutions and other cutting-edge approaches. The session especially welcomes papers with an interdisciplinary wide-range focus relevant for future crewed missions. Themes may span across innovative technologies, architectural, interior and design approaches and elements, human factors, social-cultural dynamics of space missions, the legal and policy aspects of analog or future crewed missions, as well as the economics of such missions.

Co-Chairs Rapporteur

Anna Barbara Imhof Sandra Haeuplik-Meusburger Amit Srivastava

Liquifer Systems Group (LSG) — AUSTRIA Technische Universität Wien (TU Wien) — AUSTRIA University of Adelaide — AUSTRALIA

E5.IP Interactive Presentations - 37TH IAA SYMPOSIUM ON SPACE AND SOCIETY

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space and Society addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chair

 Randy Liebermann
 Olga Bannova

 — UNITED STATES
 University of Houston — UNITED STATES

E6 IAF BUSINESSES AND INNOVATION SYMPOSIUM

The Business Innovation Symposium, organized by the International Astronautical Federation (IAF), is designed to offer papers that observe, study, analyze, describe, and/or propose any topic related to space activities that have commercial objectives, whether from an academic and/or practitioner perspective.

Coordinator

Nancy C. Wolfson

American Institute of Aeronautics and Astronautics

(AIAA) — UNITED STATES

E6.1 Space Entrepreneurship and Investment: The Practitioners' Perspectives

This session contains a broad spectrum of entrepreneurship, innovation, finance and investment presentations from the practitioner's perspective. Suggested topics suitable for this session can be at any level of analysis, including (from macroscopic to microscopic) the space sector, industries (e.g., propulsion), industry segments (e.g., chemical propulsion), individual firms, a portion of or a group of individuals within a firm, or an individual. Example entrepreneurship and innovation topics suitable for this session include descriptions related to entrepreneurship and innovation such as new market sectors, new businesses, new projects, recent experiences of start-up companies. Suitable finance or investment topics apply to large programmes, new firms, the analysis methodologies of markets, or new developments in the finance and investment communities (including angel investors, venture capital organizations, and investment banks).

Co-Chair

Joerg Kreisel

JOERG KREISEL International Consultant (JKIC) — GERMANY

Daria Stepanova

— GERMANY

Michele Cristina Silva Melo Ideia Space — BRAZIL

F6.2. **Government and Industry Perspectives on the Future of Space Commerce**

This innovative session convenes experts from different sectors within the space industry and leaders from both the private sector and government agencies to explore their roles and emerging best practices that encourage the envisioning, building, and maturing of NewSpace trade and markets. 1. Therefore, we welcome submissions that explore recent advancements in the commercialization of space, propose business models, define new markets, encourage diversification, sustainability, and attract private investment. This can include traditional space industry applications (satellite-based services encompassing Earth observation, navigation, and communications), and emerging opportunities such as settlements, destinations (i.e., private space stations), resource extraction (asteroid mining, debris commercialization), transportation, industrialization, new financing and insurance, and other sub-sectors. Also, consider: What government actions best encourage space commerce from an entrepreneurial and "government-as-enabler" viewpoint in an era of both constrained resources and major opportunities? Consider policies, regulations, public infrastructure, and other possible investments to bridge the gap between business and government objectives, fostering a more robust and sustainable space economy from a uniquely entrepreneurial perspective. 2. We welcome papers on the value and use of industry principles and how they could be best developed. How could/should they interact with government-driven principles such as the Artemis Accords or the UN Guidelines? This could influence entrepreneurial activities, including startups, medium and large businesses, and established and emerging markets. Address the challenges of bringing government and industry together, including balancing their objectives and obligations for the public interest with a company's business cycle and obligation to shareholders, maintaining healthy public-private boundaries, and building mutual trust. This session will open with an invited keynote speaker, followed by a panel of experts for a discussion and Q&A period, and will conclude with paper presentations.

Co-Chairs

Nancy C. Wolfson

American Institute of Aeronautics and Astronautics (AIAA) — UNITED STATES

Rose Croshier National Oceanic and Atmospheric Administration (NOAA) Ideia Space — BRAZIL

Michele Cristina Silva Melo

- UNITED STATES

Andrea Cabello

University of Brasilia — BRAZIL

F6.3 **Innovation: The Academics' Perspectives**

This session will contain academic presentations, at any level of analysis, and on any aspect of entrepreneurship, innovation, finance, or investment, organization theory, investment, etc. Variance and phenomenological studies are encouraged. Qualitative, quantitative, or mixed methods approaches are all accepted. Academic domains of interest include strategic management, economics, leadership, innovation management, and all perspectives of organization theory (including organizational economics, cognition and interpretation, power and dependence, technology, learning, complexity and computation, institutions, networks, ecology, and evolution). At a minimum, submissions are expected to be at the level of working papers performed as part of any graduate degree programme (i.e., masters, doctoral, and post-graduate). This work can include theoretical and applied research.

Co-Chairs

Michele Cristina Silva Melo

F6.4 **Entrepreneurship Around the World** GTS.1

Entrepreneurship presents unique opportunities and challenges from country to country around the world. Some of the experiences of entrepreneurs transcend national and cultural borders, but some others do not. This session welcomes papers and presentations which describe the barriers experienced by real entrepreneurs in their different countries and regions. A panel with industry experts from around the world will set the stage followed by a discussion which highlights the commonalities and unique characteristics of nation-specific entrepreneurial barriers as identified by the individual papers presented. This is a technical session co-sponsored by the IAF Space Entrepreneurship and Investment Committee (SEIC) and the IAF Workforce Development/Young Professionals Programme Committee, as part of the Global Technical Sessions – presenters can present in person at the IAC or from their home/work/university location.

Co-Chairs

Susana Fornies Rodriguez

ISAE - Institut Supérieur de l'Aéronautique et de l'Espace — FRANCE

Samuel Peterson Embry-Riddle Aeronautical University Worldwide —

UNITED STATES

Eleonora Lombardi Fondazione E. Amaldi — ITALY

Co-Chairs

Nancy C. Wolfson American Institute of Aeronautics and Astronautics (AIAA) — UNITED STATES

George A. Danos

Cyprus Space Exploration Organisation (CSEO) — CYPRUS

Rapporteur

Michele Cristina Silva Melo Ideia Space — BRAZIL

F6.IP Interactive Presentations - IAF BUSINESS INNOVATION SYMPOSIUM

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Business Innovation addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

E7

Nancy C. Wolfson

American Institute of Aeronautics and Astronautics

(AIAA) — UNITED STATES

69TH IISL COLLOQUIUM ON THE LAW OF OUTER SPACE

The Colloquium will focus on topical questions of international, regional and national space law. Following a Keynote Lecture and the traditional Young Scholars Session, the program will address: Information Sharing in Outer Space: Theory and Practice; Legal and Regulatory Opportunities and Challenges in the Evolving Low Earth Orbit (LEO) Economy; Planetary Defence: Legal Issues in the Deflection of Hazardous Asteroids and Comets; Space Stations: Legal Framework, and Recent Developments in Space Law — National and Regional Space Legislation. Within the framework of the colloquium, interactive presentations on topics chosen by their authors will also be delivered.

Coordinators

Lesley Jane Smith

Leuphana University of Lüneburg/Weber-Steinhaus & Smith — GERMANY

Catherine Doldirina

International Institute of Space Law (IISL) — ITALY

E7.1 **Young Scholars Session**

This session is open for abstracts and papers from space lawyers under 35 years old. It welcomes contributions on any topic related to space law. It also features a regular, annual keynote presentation by a High level expert and diplomat in the field of international space law.

Co-Chairs

Merve Erdem Burger

Swiss Space Law Forum — SWITZERLAND

Nomfuneko Irene Majaja Kenya Space Agency — KENYA

Rapporteurs

Shrawani Shagun

National Law University of Delhi — INDIA

Thomas Graham

Swinburne University of Technology — AUSTRALIA

F7.2 Information Sharing in Outer Space: Theory and Practice

International cooperation in outer space relies upon efficient and effective information sharing and exchange mechanisms. The increasing complexity and scale of space activities, involving multiple space actors, represent opportunities while raise challenges to the peaceful and sustainable uses of outer space. Transparency is required to support due regard for the corresponding interests of all stakeholders involved. The Outer Space Treaty promotes international cooperation and information sharing in space activities as part of fundamental legal principles. Through Article XI, general standards of behavior are provided on that regard, supporting proper collaborative initiatives. Consideration of such tenet in legal and practice, especially in the framework of the United Nations, reiterates the relevance of public data sharing initiatives towards effective end results. Examples are commercial SSA/STM services providers relying on the UN international register(s) of space objects, COSPAR International Designators, and on open-data sources to collect information relating to physical identification of satellites.

Co-Chairs

Joan Chesoni George (Georgios) D. Kyriakopoulos

National and Kapodistrian University Of Athens — GREECE Kenya Space Agency (KSA) — KENYA

Rapporteurs

Beyza Eravci Giuliana Rotola

University of Luxembourg — TÜRKIYE Scuola Superiore Sant'Anna — ITALY

F7.3 Legal and Regulatory Opportunities and Challenges in the Evolving Low Earth Orbit (LEO) Economy

The expanding Low Earth Orbit (LEO) economy, driven by satellite constellations, presents both opportunities and challenges for the public and private sector. Real and present dangers to the continuing safety and sustainability of outer space are posed by debris and active satellites; furthermore, an orbital collision would result in third party liability event for some satellite constellations. Key topics therefore include the sustainability of LEO amid increased congestion, challenges in space traffic management, and legal frameworks for orbital debris mitigation and remediation. Regulatory solutions proposed in the IADC Space Debris Mitigation Guidelines, UN COPUOS Debris Mitigation Guidelines and the Long-Term Sustainability Guidelines 2019 are recommended for States to adopt at national levels. Increasingly, commercial SSA/STM services are provided.

Co-Chairs

Upasana Dasgupta Olavo De Oliveira Bittencourt Neto

Catholic University of Santos — BRAZIL OP Jindal Global University — INDIA

Rapporteurs

Gurur Gaye Günal **Gregory Radisic** Günal Law Firm — TÜRKIYF For All Moonkind Inc. — CANADA

F7.4 Planetary Defence: Legal Issues in the Deflection of Hazardous Asteroids and Comets

Planetary defence covers human activities to address potential impacts of Near-Earth Objects (NEOs) - asteroids or comets that pass relatively close to the Earth's orbit in astronomical terms – on the Earth. In recent years, space agencies have increased their efforts in the detection and appraisal of hazardous NEOs and to develop strategies to prevent and mitigate potential impacts. In view of different potential mitigation measures, legal questions need to be answered. Some mitigation measures may raise concerns with respect to their legality under international law, most notably nuclear explosive devices. In addition, States may be liable for damage caused on Earth or in outer space in the context of a planetary defence mission. The United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS) and the United Nations Office for Outer Space Affairs (UNOOSA) are involved in awareness raising and in promoting international discourse and global cooperation on the topic of NEOs, including by the establishment of the International Asteroid Warning Network (IAWN) and the Space Mission Planning Advisory Group (SMPAG). In 2020, an Ad hoc Working Group on Legal Issues of SMPAG published a report on some of the most pressing legal issues of planetary defence.

Co-Chair

Rapporteur Irmgard Marboe

Alissa J. Haddaji Massachusetts Institute of Technology (MIT) — UNITED STATES

University of Vienna — AUSTRIA

Rapporteurs

Anıl Akyol

Jingyi Liu Beijing Institute of Technology, Institute of Space Law —

E7.5 **Space Stations: Legal Framework**

With decommissioning the successful International Space Station (ISS) approaching, a question on its followers or substitutes opens. At present, the Chinese space station is orbiting the Earth. For the future, a commercial space station is under preparation, and the Gateway orbiting the Moon is planned. These structures are envisaged for a permanent or semi-permanent stay of human beings in outer space, serving not only as a shelter but as a basis for scientific investigations in weightlessness or the stay of microgravity. Their developments signalise a transition from LEO activities to lunar and Mars exploration. The advent of commercial space stations, fostering a new era of in-orbit research, tourism, and in space manufacturing, raises questions inter alia about property rights, liability, and jurisdiction. The session will seek to explore how current governance frameworks must evolve to support this transition, addressing overlaps and gaps in international and national space laws. Invited are i.e. contributions dealing with the legal aspects of the decommissioning of the ISS, in comparison with deorbiting earlier space structures, with the legal framework of the Chinese space station, as well as the planned commercial space station. Additionally, the international legal framework of the Gateway station can be debated.

Co-Chair

Nazlı Can Mahulena Hofmann – TÜRKIYE University of Luxembourg — LUXEMBOURG

Rapporteurs

Safwene El Khaira

Simona Spassova
University of Luxembourg — LUXEMBOURG ECSL - FRANCE

E7.6 40TH IAA/IISL Scientific Legal Roundtable: The Expanding Raster Of Space Exploring Actors - The World Of The Upcoming Space **Nations And Their Role In The International Cooperation** E3.5

Invited papers only. Since 1957, the legal and scientific framework for outer space has evolved through three distinct stages. The first stage, dominated by government programs from the Soviet Union and the United States, expanded in the 1970s to include agencies from Europe, Japan, India, and China. The second stage began in the 1980s with the entry of commercial entities, supported by major space powers. We are now in the third stage, characterized by the emergence of new governmental and commercial space programs from over 120 countries, such as India and the UAE's Mars missions and the 2025 establishment of the African Space Agency, collaborating closely with commercial partners, much like their predecessors. This increasing diversity and congestion in space have forced governance to adapt. Early space activities were largely governmental and well-suited to the formal treaties of the 1960s and 70s. However, the current mix of nations, missions, and technologies has challenged these "hard" treaty laws, As a result, there's a shift toward more flexible, non-binding guidelines, like the UNCOPUOS Long-Term Sustainability Guidelines and the Artemis Accords. This evolution in the space community also raises new scientific and ethical questions about exploration methods and the search for extraterrestrial life. The 40th Scientific/Legal Roundtable will address these challenges.

Co-Chairs

Rainer Sandau **Larry Martinez**

International Institute of Space Law (IISL) — UNITED onal Academy of Astronautics (IAA) — GERMANY STATES

Rapporteur

(DLR) — GERMANY

Nicola Rohner-Willsch Deutsches Zentrum für Luft- und Raumfahrt e.V. Ivan Fino

Sant'Anna School of Advanced Studies — ITALY

F7 7 Recent Developments in Space Law – National and Regional Space Legislation

The increasing involvement of private actors in outer space has raised the need for States to enact national space legislation, which contributes to a growing body of national space law worldwide. Recent developments and updates involve interesting innovations. At the regional level, States are also active in developing regulatory frameworks to facilitate and improve cooperation between States and their nationals in the respective regions. In the European Union, recent developments in space law concern the project of an EU Space Act and the regulatory framework of the EU Space Programme, as well as other forms of cooperation with the European Space Agency. In other regions, cooperation between States with respect to space activities is also growing. Examples include the Asia-Pacific Space Cooperation Organization, the newly established African Space Agency, the Arab States in the Gulf Cooperation Council, the member States of the Commonwealth of Independent States with their dedicated convention on outer space cooperation, or the Latin American countries within their recently created Latin American and Caribbean Space Agency.

Co-Chairs Rapporteur

Günes Ünüvar Theodora Liameti Christina Giannopapa

University of Luxembourg — LUXEMBOURG European Union Agency for the Space Programme (EUSPA) University of Luxembourg — GREECE - CZECH REPUBLIC

Interactive Presentations - IISL COLLOQUIUM ON THE LAW OF OUTER SPACE E7.IP

The IP session is not restricted to any specific topic related to space law and invites authors to contribute presentations on any interesting, relevant and current space law issues.

Gina Petrovici

German Space Agency — GERMANY

IAA MULTILINGUAL ASTRONAUTICAL TERMINOLOGY SYMPOSIUM F₈

This symposium, organized by the International Academy of Astronautics (IAA), will review the progress made in multilingual space terminology and its impact on international cooperation in space. Terminology is a key issue for a better understanding among people using various languages and dialects. Consecutive or simultaneous translation does not remove the risk of ambiguity during technical meetings and accuracy in terminology is essential during all phases of cooperation. The session will address issues such as standardization of definitions in space science and technology. The specific character of emerging space countries will also be discussed

Coordinators

Susan McKenna-Lawlor Tetsuo Yoshimitsu

Space Technology (Ireland) Ltd. — IRELAND Institute of Space and Astronautical Science (ISAS), Japan

Aerospace Exploration Agency — JAPAN

E8.1 **Multilingual Astronautical Terminology**

This session, organized by the International Academy of Astronautics (IAA), will review the progress made in multilingual space terminology and its impact on international cooperation in space. Terminology is a key issue for a better understanding among people using various languages and dialects. Consecutive or simultaneous translation does not remove the risk of ambiguity during technical meetings and accuracy in terminology is essential during all phases of cooperation. The session will address issues such as standardization of definitions in space science and technology. The specific character of emerging space countries will also be discussed.

Co-Chairs Rapporteur

Susan McKenna-Lawlor Tetsuo Yoshimitsu

Space Technology (Ireland) Ltd. — IRELAND Institute of Space and Astronautical Science (ISAS), Japan International Academy of Astronautics (IAA) — FRANCE Aerospace Exploration Agency — JAPAN

E9 IAF SYMPOSIUM ON SPACE SECURITY, STABILITY AND SUSTAINABILITY OF SPACE ACTIVITIES

This symposium, organized by the International Astronautical Federation (IAF), will address two major issues regarding safe and secure operations of space systems via two separate sessions: i) policy, legal, institutional and economic aspects of space debris detection, mitigation and removal, jointly with the IAA Symposium on Space Debris, and, ii) cyber security threats to space missions and countermeasures to address them, jointly with the IAA Symposium on Safety, Quality and Knowledge Management on Space Activities. Papers dealing with non-technical aspects of space debris mitigation and removal, as well as planetary defence against asteroid impact threats, and case studies focusing on countermeasures needs, including cryptography processes, operational security, supply chain and other aspects relevant to ensure a "cyber secure" mission will be well received in this Symposium

Coordinators

Serge Plattard Stefano Zatti University College London (UCL) — UNITED University of Rome "La Sapienza" — ITALY

KINGDOM

Policy, Legal, Institutional, Economic and Security Aspects of Debris Mitigation, Debris Remediation and STM

This session will address all non-technical aspects of debris mitigation, debris remediation and STM. Papers may focus on aspects of responsibility, liability and registration, E9.1

on the role of bodies such as UNCOPUOS or IADC, as well as on insurance, financial incentives and funding. In addition, security-related aspects and the role of international cooperation in addressing these issues may be considered.

Co-Chairs

A6.8

David Spencer Serge Plattard

The Aerospace Corporation — UNITED STATES University College London (UCL) — UNITED KINGDOM International Institute of Air and Space Law, Leiden University — THE NETHERLANDS

Rapporteurs

Andrea Capurso Victoria Samson Emma Kerr

Deimos Space UK Ltd — UNITED KINGDOM LUISS Guido Carli University — ITALY Secure World Foundation — UNITED STATES

E9.2 Cyber-based Security Threats to Space Missions: Establishing the Legal, Institutional and Collaborative Framework to Counteract

The increasingly pervasive network connectivity following the Internet explosion introduces a whole new families of cyber-security threats to space missions. To send commands to a spacecraft now you would not need to build a ground station, but you can penetrate from your home or office the existing ground infrastructures, bypassing their protection measures, from anywhere in the world. The questions to be addressed in the session will span across the following issues: - What is the interest of cyber-crime and cyber-activism with respect to space activities? - How are aerospace organisations managing the ability to introduce the right level of security measures in the process to plan and develop new missions? - What legal and protection framework is or has to be put in place to enable secure cooperation across corporate and international boundaries? - How is knowledge about security threats captured, shared, and used to follow the evolution of cyber threats? - Which ones of these specific threats are to be expected to target space missions, from the ground and from space? - What is particularly to be expected from the cyber-space to target outer space? Contribution are expected to focus on cyber-specific legislation, best practices, processes, collaboration methods between law enforcement and institutional partners, and any other aspects of the organization of space missions that are all constituting the formal components to keep a mission "cyber secure".

Co-Chairs

Julien Airaud

Stefano Zatti

Centre National d'Etudes Spatiales (CNES) — FRANCE University of Rome "La Sapienza" — ITALY

F9.3 Norms and Standards for Safe and Responsible Behaviour in Space

The rapid expansion and evolution of the global space arena is characterized by an increasing number and diversity of space actors and the emergence of new kinds of space systems, some of which involve very large constellations of satellites numbering in the thousands to tens of thousands, and also new kinds of space activities, such as on-orbit servicing, refueling, in-orbit assembly and manufacturing, active debris removal, and so on. With increasing congestion in the Earth's orbital environment, these new kinds of space activities raise questions about the safety of space operations, particularly when contingency situations arise (such as conjunctions), or when spacecraft operate in close proximity to each other and there are no clear, widely accepted international standards or norms of behaviour. For this reason, it is important to identify and leverage best practices from government and industry to ensure safety of flight and safe rendezvous and proximity operations of spacecraft. These best practices may subsequently be codified as norms and standards for safe and responsible behaviour in space. This session is intended to be a forum to allow practitioners to discuss and socialize the types of norms, standards and behaviours that would be conducive to the safety of space operations.

Co-Chairs Rapporteur

Peter Martinez Annamaria Nassisi Rachel Venn

Secure World Foundation — UNITED STATES Astroscale Ltd — UNITED KINGDOM Thales Alenia Space Italia — ITALY

F9.4 Strategic Risk Management for Successful Space & Defence Programmes

The many benefits of space-based activities to the global economy, technology innovation, national defense, science, and exploration are only realizable if the use of space is secure and sustainable. Risk management plays a crucial role in establishing and maintaining this secure and sustainable use of space This session will explore how Enterprise Risk Management (ERM) frameworks can help space organizations (civil, government and military) manage interconnected strategic, operational, and compliance risks, promoting resilience, sustainability, and collaboration across sectors. Abstracts would be welcome on the following topics: 1. Strategic Risk & Scenario Planning - How global Geopolitical & Socio-Economic challenges (e.g., military conflicts, extreme weather events, etc.) shape ERM practices and long-term risk-based planning in space. - Preparing for "black swan" events (e.g., space conflicts, space weather events, etc.) through ERM. - Risks in Military Space Operations: Examining ERM's role in national security space functions and its impact on security strategies. - How to best make use of advances in new technologies development such as AI, quantum, etc. and what threats/opportunities to a secure world do they represent? 2. Insurance & Crisis Management Best Practices - Integrating insurance and crisis management best practices with ERM frameworks 3. ERM for Public-Private Sector Collaboration - Effective ERM frameworks for joint risk management between governments and private space entities.

Co-Chairs

Maria-Gabriella Sarah Katarzyna Malinowska **Christopher Geiger** European Space Agency (ESA) — FRANCE European Space Foundation (ESF) — POLAND Lockheed Martin Corporation (LMC) — UNITED STATES

Rapporteur

Andrew Court

TNO — THE NETHERLANDS

F9.5 Mitigating threatening actions in orbit: How to enhance and strengthen space security

There is growing concern about the vulnerability of space systems and services to efforts to disrupt, deny, degrade, destroy or otherwise interfere with them. This in turn has led to increased rhetoric from some countries about the need to prepare for future conflicts on Earth to extend into space and to accordingly carry out more aggressive policies, postures, and capabilities. This paper session will focus on space security issues and how wide ranging their effects can be on the sustainability of the space environment and spaceflight safety. This will discuss potential threats to space systems, services, and activities in terms of actions that are deliberately intended to be harmful but also those that can be inadvertently escalatory. It will promote strategies for reducing space threats, with the final goal of raising awareness of emerging security challenges, promoting information exchange, and exploring collaborative solutions for ensuring a safe, stable, and peaceful space environment for all.

Guoyu Wang Victoria Samson Agnieszka Lukaszczyk

Beijing Institute of Technology, Institute of Space Law Secure World Foundation — UNITED STATES Andart Global — POLAND

F9.IP Interactive Presentations - IAF SYMPOSIUM ON SPACE SECURITY, STABILITY AND SUSTAINABILITY OF SPACE ACTIVITIES

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Space Security addressed in the classic Sessions. The IP session is not restricted to any specific topic related to space law and invites authors to contribute presentations on any interesting, relevant and current space law issues. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Coordinator

Serge Plattard

University College London (UCL) — UNITED KINGDOM

IAF SYMPOSIUM ON PLANETARY DEFENSE AND NEAR-EARTH OBJECTS E10

This symposium, organized by the International Astronautical Federation (IAF), will address all aspects of the hazards associated with the impact of asteroids and comets on Earth and their mitigation. Due to the multidisciplinary nature of planetary defense, the symposium additionally aims to establish joint sessions with other symposiums investigating synergies and lessons learned

Alex Karl Alissa J. Haddaii

Massachusetts Institute of Technology (MIT) Space Applications Services — BELGIUM UNITED STATES

E10.1 **Planetary Defense from Asteroids and Comets**

This session will address all aspects of the hazards associated with the impact of asteroids and comets on Earth and their mitigation, covering these broad areas of interest; 1. An overview about the latest developments and mission summaries related to recent, ongoing or upcoming missions with a focus on planetary defense. 2. Advances in pre-impact determinations and prevention of impacts, such as discovery and characterisation, along with mission & campaign designs to deflect or disrupt a hazardous object. 3. Advances in preparation for impact, such as impact consequences & disaster management and response coordination on local and international levels. 4. General considerations such as the influence of legal, social and economic aspects on the decision to act by decision makers, the deflection methods used as well as public education and communication to various audiences 5. Lessons learned from other missions and endeavours that could benefit planetary defense and vice versa.

Co-Chairs

Daniel Mazanek Aurélie Moussi

National Aeronautics and Space Administration Centre National d'Etudes Spatiales (CNES) — FRANCE (NASA), Langley Research Center — UNITED STATES

Rapporteurs

Alejandro J. Roman Molinas Alex Karl

Paraguayan Space Agency — PARAGUAY Space Applications Services — BELGIUM

F10.2

Informing Planetary Defense
This session will address all aspects that contribute towards informing future planetary defense, including: 1. Results from the first impact deflection test with DART (e.g., results, including ground-based observations regarding the orbital period change, physical characteristics of Didymos and Dimorphos, geology of the impact site, revised numerical modelling of DART impact, and Didymos' dynamics based on DART impact); 2. Results from NEO sample return missions, as well as perspectives regarding ongoing and future NEO missions; 3. Legal considerations that would contribute towards the decision to act; and 4. Any other transdisciplinary research that enhances our understanding to make better decisions and increase the likelihood of a successful mitigation of an asteroid or comet impact.

Co-Chairs

National Aeronautics and Space Administration (NASA), Langlev Research Center — UNITED STATES Alissa J. Haddaji

Massachusetts Institute of Technology (MIT) — UNITED

Rapporteur Philipp Maie

Institute of Space Systems, University of Stuttgart —

E10.IP

Interactive Presentations - IAF SYMPOSIUM ON PLANETARY DEFENSE AND NEAR-EARTH OBJECTS

This session offers a unique opportunity to deliver your key messages in an interactive presentation on any of the subjects of Planetary Defense and Near-Earth Objects addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot links, pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Co-Chairs

Alex Karl

Alissa J. Haddaji

Space Applications Services — BELGIUM

Massachusetts Institute of Technology (MIT) — UNITED

E11

IAF SYMPOSIUM ON EMERGING SPACE ECOSYSTEMS

The IAF Symposium on Emerging Space Ecosystems is driven by key objectives aligned with the International Astronautical Federation's (IAF) 3G Diversity Agenda. The IAF Symposium will address the dynamic space landscape. It will serve as a platform for discussions on emerging space ecosystems, with a focus on fostering innovation in space access, entrepreneurship, and engaging emerging countries. The IAF Symposium will explore technology, policies, and strategies for achieving these goals. Entrepreneurship will be encouraged, fostering collaboration between established companies and startups. Emerging spacefaring nations will have an opportunity to share experiences and form partnerships.

Matias Campos

Astralintu Space Technologies — ECUADOR

E11.1

Connecting Emerging Space ecoSystems

This session will delve into holistic space ecosystem development, emphasizing the interconnectedness of research, education, policy, and industry. Sustainability will be a central theme, promoting responsible space practices and alignment with global sustainability.

Co-Chair

Matias Campos

 ${\it Astralintu Space Technologies - ECUADOR}$

Aleiandro J. Roman Molinas

Paraguayan Space Agency — PARAGUAY

Rapporteur Marlene Losier

Space Renaissance International — UNITED STATES

F11.IP

Interactive Presentations - IAF SYMPOSIUM ON EMERGING SPACE ECOSYSTEMS

This session offers a unique opportunity to deliver your key messages in an interactive presentation on Emerging Space Ecosystems addressed in the classic Sessions. The presentation will be displayed on a digital screen in a dedicated location and available for view by all Congress attendees for the entire Congress week. In addition, one afternoon is dedicated exclusively for the attendees to view the Interactive Presentations, and the author will be assigned a specific ten minute slot to personally present the topic and interact with the attendees present. The Interactive Presentation may take advantage of all electronic display capabilities, such as: PowerPoint charts, embedded hot link pictures, audio and video clips etc. An award will also be presented to the author of the best Interactive Presentation in the E Category at a special ceremony. An Abstract that follows the standard format must be submitted by the deadline for standard IAC abstracts.

Matias Campos

lan Grosner

Astralintu Space Technologies — ECUADOR

Brazilian Space Agency (AEB) — BRAZIL

GTS. GLOBAL TECHNICAL SYMPOSIUM (GTS)

The Global Technical Symposium (GTS) is designed to offer a modern and eclectic platform at the IAC for sharing technical content to an open minded audience on-site but also online! Jointly organized by associated technical committees and the Workforce Development-Young Professional Programme Committee, these sessions are similar to the conventional technical sessions in terms of abstract selection and paper submissions. However, in addition to the on-site presentation of the technical papers, these sessions are also broadcast online. Authors are allowed to present remotely or on-site, and participants are also allowed to listen to the session from the comfort of their homes or at their workplaces in addition to the IAC venue. The IAF hopes that this approach will enable more students and young professionals without the ability to join IAC on-site to contribute to discussion at the IAC.

- **ENTREPRENEURSHIP AROUND THE WORLD**
- GTS.2 **HUMAN SPACEFLIGHT GLOBAL TECHNICAL SESSION**
- GTS.3 SPACE COMMUNICATIONS AND NAVIGATION GLOBAL TECHNICAL SESSION
- STUDENT TEAM COMPETITION GTS.4
- SMALL SATELLITE MISSIONS GLOBAL TECHNICAL SESSION GTS.5

Coordinated by Eleonora Lombardi, Fondazione E. Amaldi — ITALY

GTS.1

E6.4

Entrepreneurship Around the World

Entrepreneurship has different characteristics that differ from country to country around the world. Some of the challenges that entrepreneurs face transcend national and cultural borders, but some others do not. This session welcomes papers and presentations that describe the barriers experienced by real entrepreneurs in their different countries and regions around the world. A summary discussion will identify the commonalities and unique characteristics of nation-specific entrepreneurial barriers as identified by the presenters. This is a technical session co-sponsored by the IAF Entrepreneurship and Investment Committee (EIC) and the IAF Workforce Development/Young Professionals $Programme\ Committee, as\ part\ of\ the\ Global\ Technical\ Sessions-presenters\ can\ present\ in\ person\ at\ the\ IAC\ or\ from\ their\ home/work/university\ location.$

Co-Chairs

George A. Danos

Cyprus Space Exploration Organisation (CSEO) —

Nancy C. Wolfson

Eleonora Lombardi

American Institute of Aeronautics and Astronautics (AIAA) — UNITED STATES

l'Espace — FRANCE

Samuel Peterson Embry-Riddle Aeronautical University Worldwide —

UNITED STATES

Fondazione E. Amaldi — ITALY

Rapporteur

Michele Cristina Silva Melo

Susana Fornies Rodriguez

ISAE - Institut Supérieur de l'Aéronautique et de

Ideia Space — BRAZIL

GTS.2 **Human Spaceflight Global Technical Session** B3.9

The Human Space Endeavours Global Technical Session is targeting individuals and organizations with the objective of sharing best practices, future projects, research and issues for the future of Human Space Endeavours for sub-orbital, LEO and BEO. This is a Global session co-sponsored by the Human Space Endeavours Committee and the Workforce Development/Young Professionals Programme Committee.

Co-Chairs

B2.8

B4.9

Guillaume Girard Andrea Jaime

Zero2infinity — SPAIN Isar Aerospace Technologies GmbH — GERMANY

GTS.3 **Space Communications and Navigation Global Technical Session**

This is a hybrid (virtual and in person) session that targets a global audience where developments in a wide range of satellite communication and space-based PNT (position, navigation, timing) topics are presented and discussed. Communication topics include fixed, mobile, broadcasting, and data relay technologies and services. Space-based PNT topics include sensors, systems, architectures, applications, and services. Topics ranging from Earth orbit to interplanetary space can be addressed. Authors are welcome to either present their work in person at the conference or remotely via the IAF's online platform. This session offers authors the unique opportunity to directly engage an audience beyond just the on-site attendees and is co-sponsored by the Space Communications and Navigation Committee and the Workforce Development/Young Professionals Programme Committee and the Workforce Development Professionals Programme Committee and the Workforce Development Professionals Professional P

Co-Chairs

Eric Wille Joshua Critchley-Marrows European Space Agency (ESA) — THE NETHERLANDS ArkEdge Space Inc. — AUSTRALIA

Rapporteur

École de technologie supérieure — CANADA ${\it Indian Space Research Organization (ISRO) - INDIA}$

GTS.4 **Student Team Competition** E2.3

Undergraduate and graduate level student teams present papers on any subject related to space sciences, industry or technology. These papers will represent the work of the authors (three or more students). Students presenting in this session will compete for the Hans von Muldau Team Award. The selection of the oral presentations is solely based on the submitted abstracts. We strongly recommend that you submit an abstract with an extensive description of your topic, including a detailed explanation of your contribution and the novelty of your work. Furthermore, a short description how your team worked together to achieve the project goal should be included. The guidelines for the student competition will be distributed from the session chairs to the authors after abstract acceptance.

Co-Chairs Rapporteur

Emmanuel Zenou Andrea Jaime Kathleen Coderre titut Supérieur de l'Aéronautique et de l'Espace Isar Aerospace Technologies GmbH — GERMANY Lockheed Martin (Space Systems Company) — UNITED (ISAE) — FRANCE STATES

GTS.5 **Small Satellite Missions Global Technical Session**

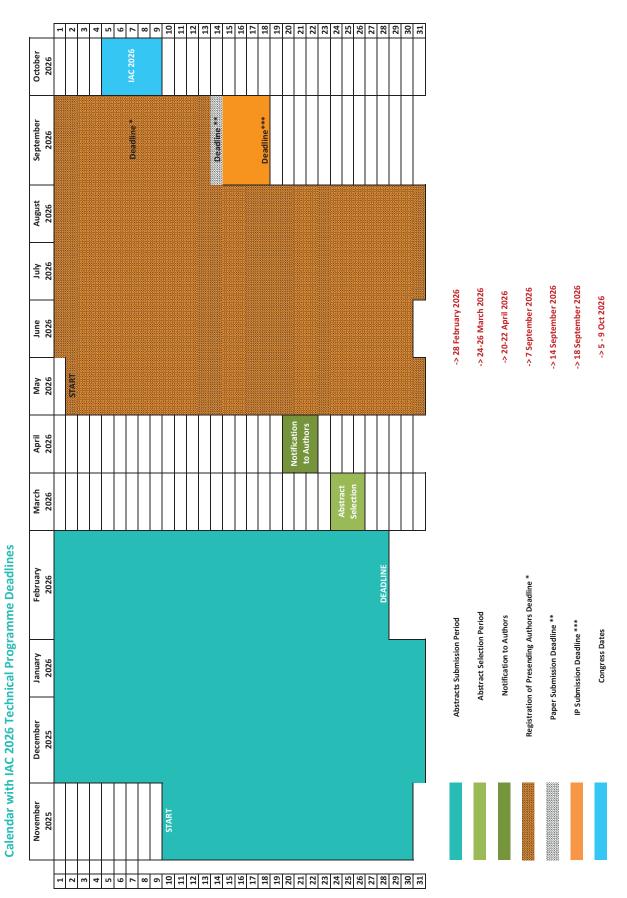
The Small Satellite Missions Global Technical Session (GTS) is a collaboration between the International Academy of Astronautics (IAA) Small Satellite Missions Symposium and the International Astronautical Federation (IAF) Workforce Development/Young Professionals Programme Committee. This session is unique in that it allows for sharing of information on a global scale with presenters and audience both at the IAC venue and online at their home/work/university locations. Abstracts are solicited regarding operational missions or mature proposals for small satellite systems and related topics. These must have clear relevance on an international scale or at a business level, and must also provide young professionals a taste of what the space sector has to offer. Where possible, abstracts should have a wide interest in the community and should include transferable knowledge or lessons learned. Abstracts highlighting ingenuity or innovation are preferred. Examples include space missions utilizing small satellites that address specific new societal, scientific or commercial challenges, or novel technologies that have the potential to revolutionize space missions and/or enable their access to space. Papers are to describe the specific need, the small satellite approach that addresses this need, the benefits of this approach and the use of space technology, and demonstrate that other non-space approaches provide inferior solutions. Papers from, or directed at the young professional community are preferred. This session will be accepting submissions for oral presentations only.

Co-Chairs

Matthias Hetscher

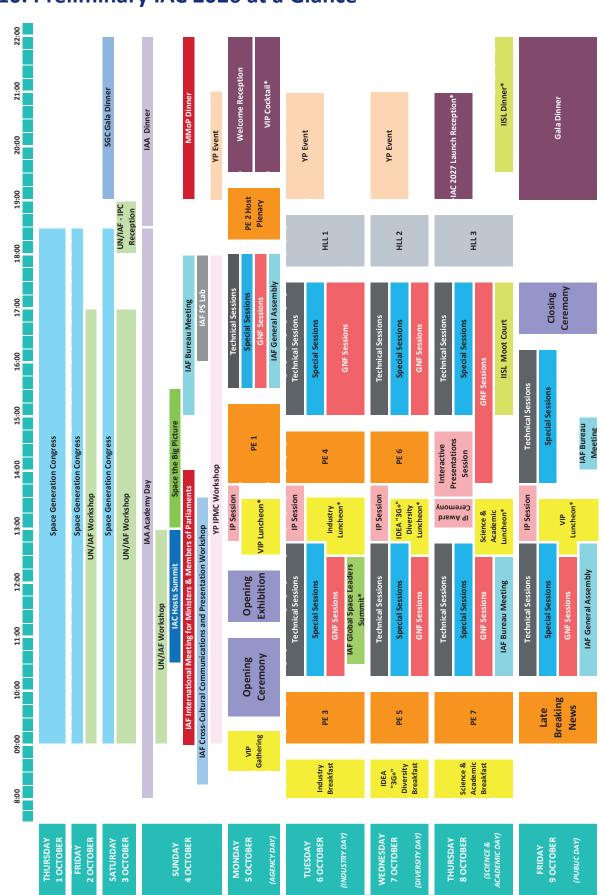
DLR (German Aerospace Center) — GERMANY OHB System AG - Oberpfaffenhofen — GERMANY

Geo-Informatics and Space Technology Development Agency (Public Organization) — THAILAND


Rapporteurs

Alex da Silva Curiel Surrey Satellite Technology Ltd (SSTL) — UNITED KINGDOM

Victoria Barabash Luleå University of Technology — SWEDEN


9. IAC 2026 Call for Papers Deadlines

10. Preliminary IAC 2026 at a Glance

Please Note: *By invitation only, Pre-Congress events as well as the IISL Moot Court are dedicated to the respective participants

11. Instructions for Authors

Abstract Preparation

Format

- Abstracts must be written in English.
- Abstract length should not exceed 400 words.

Content

- Tables or drawings are not allowed in the abstract.
- Formulas can be included using the LaTeX box provided on the abstract submission web page.
- Abstracts should specify: purpose, methodology, results and conclusions.
- Abstracts should indicate that substantive technical and/or programmatic content is included.

Co-authors

All your co-authors should be added at the time you submit your abstract using the tool provided online. You should register all of them online indicating their name, affiliation, full postal address, phone and email address.

Abstract Submission

Signing in

- The submission of abstracts must be done exclusively on the IAF website restricted area https://iafastro.directory/iac/account/login/
- If you are submitting an abstract on our website for the first time, you will need to register.
- In case you have forgotten your password, please use the password recovery utility.

Submission

- Go to the new abstract submission page.
- Browse the technical programme and choose the symposium and technical session for which you want to submit your abstract.
- Type the title and content of your abstract into the related fields.
- Choose you presentation preference: oral presentation only, interactive presentation only, oral or interactive.
- Confirm that the material is new and original and that it has not been presented at a previous meeting.
- Confirm that your attendance at IAC 2026 to deliver and present the paper is assured.

Note: An abstract can be submitted to only one Technical Session and duplicates will be discarded.

Abstract Selection

Submitted abstracts will be evaluated by the Session Chairs on the basis of technical quality and relevance to the session topics.

Prospective authors should certify that the paper was not presented at a previous meeting. Selected abstracts may be chosen for eventual oral or interactive presentation — any such choice is not an indication of quality of the submitted abstract. Their evaluation will be submitted to the Symposium Coordinators, who will make acceptance recommendations to the International Programme Committee which will make the final decision. Please note that any relevance to the Congress' main theme will be considered as an advantage

Paper and Presentation Submission

Details on how to prepare and submit your final paper as

- well as your presentation material will be available on www.iafastro.org by mid-April.
- Authors with an abstract accepted for oral presentation will be offered a presentation slot of 10 to 20 minutes.
- Authors with an abstract accepted for interactive presentation will be offered a presentation slot of 10 minutes.
- Authors with an abstract accepted for an interactive presentation will be asked to prepare slides and display them for the duration of the congress on screens. Authors will be assigned a specific screen number and will have a dedicated slot during which they will have the opportunity to engage in interactive discussion with other Congress attendees.

Additional Information

Preliminary versions of the IAC proceedings will be available to participants at the Congress electronically. More information about the IAF Digital Library is available on the IAF website: https://dl.iafastro.directory/

Authors should follow the above instructions for the submission of their abstracts. In addition to the IAC Proceedings, the papers of the Colloquium, along with other materials, will be published in the Proceedings of IISL. Authors who qualify may ask to be considered for the Dr I.H. Ph. Diederiks-Verschoor Award for Best Paper. Please contact the IISL secretary for the regulations at: secretary@iislweb.org.

Guidelines for ethical and responsible AI use for IAC abstracts

- We value originality, uniqueness and high-quality science at IAC.
- Use of AI is authorized to improve the readability and language of the IAC abstract work being produced, such tools can be used for content structure and improvement in texts.
- Al tools shall not be used for performing key authoring tasks such as producing scientific work and recommendations.
 Authors are responsible for carefully reviewing and editing the abstract to avoid incorrect, incomplete, or biased content.
- When submitting abstracts, authors must disclose the reasons for using AI and AI-assisted technologies, and a statement will appear in the published abstract.

DEADLINES

Abstract Submission	28 February 2026
Paper Submission	14 September 2026
Interactive Presentation Submission	18 September 2026

Please make sure to check the IAF website (<u>www.iafastro.org</u>) by the IAF Social Media regularly to get the latest updates on the Technical Programme!

QUESTIONS

Abstract submission and/or oral presentations: support@iafastro.org

TS

Interactive presentations: ipsupport@iafastro.org

12. Space in Türkiye: From Milestones to Momentum

Türkiye's national space journey began in the 1990s, marked by the launch of its first communications satellite, **TÜRKSAT 1B**, in 1994. Since then, the country has made significant progress in satellite development, Earth observation, and scientific research. Key milestones include **BİLSAT** (2003), Türkiye's first Earth observation satellite; **RASAT** (2011), the first remote sensing satellite designed and built in Türkiye; and **GÖKTÜRK-2** (2012), which strengthened national Earth observation capabilities.

Recent years have brought historic achievements. In 2023, Türkiye launched **IMECE**, its first high-resolution Earth observation satellite developed entirely with domestic capabilities. In 2024, Türkiye successfully launched **TÜRKSAT 6A**, its first indigenous and national communications satellite.

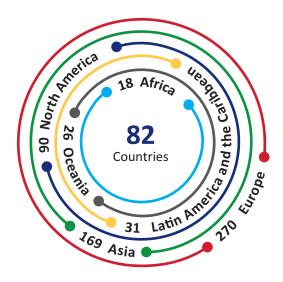
During this period of growing momentum in Türkiye's space sector, in 2018, Türkiye established the **Turkish Space Agency (TUA)** to centralize and strategically lead its growing space efforts. This was followed in 2021 by the launch of the **National Space Program**, which defines ten strategic goals—from lunar exploration (AYAP) and satellite production to independent access to space and a regional navigation system. Among those goals, TUA recently completed its **Turkish Astronaut and Science Mission**, with astronaut **Alper Gezeravcı** conducting scientific research aboard the International Space Station. A second astronaut, **Tuva Cihangir Atasever**, later performed a suborbital research flight.

The next key priority is AYAP, Türkiye's lunar mission. **AYAP** will utilize a domestically developed Hybrid Propulsion System (HIS) for orbital maneuvers, transferring the spacecraft from Earth orbit to lunar orbit, and for landing operations which is planned to take place during the second phase of the mission. This mission aims to space-qualify several indigenous subsystems and provide Türkiye with hands-on experience in deep space operations. It also represents a critical step in proving Türkiye's capability to perform complex interplanetary trajectories and surface landings using locally developed technologies.

To support such ambitions, a **national spaceport** is planned to give Türkiye the capacity to launch its own spacecraft independently. This facility will also help position the country as a competitive and dependable launch service provider in the international space sector.

Complementing these technical goals, TUA is committed to the **peaceful use of outer space** and continues to strengthen its partnerships at both regional and global levels. The country plays an active role in multilateral cooperation through various platforms, including IAF, UNOOSA, APSCO, EURISY, COSPAR, Organization of the Turkic States (OTS), ICG, and Asia-Pacific Regional Space Agency Forum (APRSAF).

TÜRKSAT 6A – Telecommunication Satellite



Join the IAF, the World's Leading and Most Diverse **Space Advocacy Body**

Become an IAF Member

- ✓ Submit the Application Form on https://www.iaf-membership.org/
- Participate in the IAF Committees in charge of defining the Technical Programme
- ✓ Propose to host a Plenary Event during the IAC
- Propose a Global Networking Forum (GNF) Event to showcase your organization's latest achievements or to discuss the most interesting topics about Space
- Participate and vote in the General Assembly and nominate IAF Officers
- Host one of our events!

Contact: membership@iafastro.org

JOIN US

Connect to the IAF Membership Platform through the **IAF** Website

We will review your application and ask in case of missing information.

Complete the Application Form and attach the requested documents.

Once reviewed, your application will be recommended by the IAF General Counsel.

Remember to inlcude the Logo of your organization and a short description.

Final approval by the General Assembly during the IAC.

Connecting @ll Space People for a sustainable future

ORGANIZER:

International Astronautical Federation (IAF)

100 Avenue de Suffren 75015 Paris, France

Phone: +33 1 45 67 42 60 **Email:** info@iafastro.org

www.iafastro.org

Connecting @II Space People for a sustainable future

HOST:

Turkish Space Agency (TUA)

İşçi Blokları Mahallesi Muhsin Yazıcıoğlu Caddesi No: 51/C - Çankaya – Ankara, Türkiye

Phone: + 90 312 412 8929 Email: tua@tua.gov.tr www.tua.gov.tr/en

Be part of the conversation @iafastro and #IAC2026

