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ABSTRACT
In November 2019, the nearby single, isolated DQ-type white dwarf LAWD 37 (WD 1142-645) aligned closely with a distant
background source and caused an astrometric microlensing event. Leveraging astrometry from Gaia and followup data from the
Hubble Space Telescope we measure the astrometric deflection of the background source and obtain a gravitational mass for
LAWD 37. The main challenge of this analysis is in extracting the lensing signal of the faint background source whilst it is buried
in the wings of LAWD 37’s point spread function. Removal of LAWD 37’s point spread function induces a significant amount
of correlated noise which we find can mimic the astrometric lensing signal. We find a deflection model including correlated
noise caused by the removal of LAWD 37’s point spread function best explains the data and yields a mass for LAWD 37 of
0.56 ± 0.08𝑀⊙ . This mass is in agreement with the theoretical mass-radius relationship and cooling tracks expected for CO
core white dwarfs. Furthermore, the mass is consistent with no or trace amounts of hydrogen that is expected for objects with
helium-rich atmospheres like LAWD 37. We conclude that further astrometric followup data on the source is likely to improve
the inference on LAWD 37’s mass at the ≈ 3 percent level and definitively rule out purely correlated noise explanations of the
data. This work provides the first semi-empirical test of the white dwarf mass-radius relationship using a single, isolated white
dwarf and supports current model atmospheres of DQ white dwarfs and white dwarf evolutionary theory.
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1 INTRODUCTION

Carbon-Oxygen (CO) core white dwarfs are the final evolutionary
stage for the vast majority of stars (≤ 8𝑀⊙). They are expected to
consist mainly of an electron-degenerate core, surrounded by a thin
envelope of non-degenerate hydrogen and helium (e.g., Tremblay
& Bergeron 2008). Their mainly degenerate nature means they are
expected to follow a mass-radius relationship (MRR) as they evolve
and cool. The white-dwarf MRR is important to many areas of as-
trophysics. It is typically relied upon to calculate the mass of white
dwarfs from photometric or spectroscopic measurements (e.g., Fal-
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con et al. 2010) and the white dwarf upper mass limit (≈ 1.4𝑀⊙)
underpins our understanding of the progenitors of type Ia supernovae.
Moreover, it is vital when using cooling white dwarfs to date stellar
populations in globular clusters (e.g., Hansen et al. 2002).

To a first-order approximation, in awhite dwarf, the inward force of
gravity is balanced by the outward pressure of the electron-degenerate
gas, resulting in a white dwarf’s radius being inversely proportional
to the cube root of its mass (Chandrasekhar 1935). Today, detailed
evolutionary coolingmodels including specific degenerate core com-
positions, the mass of the non-degenerate interior hydrogen layers,
and the effects of finite temperature are used to calculate theoretical
MRRs (e.g., Bédard et al. 2020). Despite their sophistication, the-
oretical MRRs are forced to rely on assumptions about the interior
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structure of the white dwarf. This is because the masses of the grav-
itationally stratified non-degenerate interior hydrogen, helium, and
CO layers are poorly constrained by observations of thewhite dwarf’s
surface. This is particularly important in the case of the mass frac-
tion of the interior hydrogen layer (𝑞H). Depending on temperature
and whether a ’thick’ or ’thin’ hydrogen layer is assumed, theoretical
MRRs can vary by 1-15 percent (Tremblay et al. 2017).
For hydrogen-rich white dwarfs (DA type), a thick hydrogen layer

is assumed (𝑞H = 10−4) which is the estimated maximum hydrogen
mass that post-asymptotic-giant-branch evolution models predict for
a 0.6𝑀⊙ white dwarf after residual nuclear burning (Iben & Tutukov
1984). Helium-rich white dwarfs (non-DA type) are either created
with hydrogen deficient atmospheres or their hydrogen is hidden
beneath their surface (Tremblay & Bergeron 2008). For these white
dwarfs, a thin hydrogen layer is assumed (𝑞H = 10−10) and represents
only trace amounts of hydrogen.
Despite the white dwarf MRR’s importance, observational tests of

the relationship are challenging. The state-of-the-art in direct tests of
the white dwarf MMR come from white dwarfs spanning a range of
masses and radii that are in eclipsing binary systems (see e.g., Parsons
et al. 2016, 2017, upper panel in Fig. 1), In these scenarios, both the
white dwarf’s mass and radius can be determined independently of
atmospheric models.1 Otherwise, for white dwarfs not in eclipsing
binary systems, semi-empirical tests of the MRR which depend on
white dwarf atmospheric models, are possible.
Byfitting atmosphericmodels to broad-band photometry and spec-

troscopy (e.g., Giammichele et al. 2012), awhite dwarfs’ atmospheric
parameters (𝑇eff, log 𝑔), and its solid angle can bemeasured. Combin-
ing the solid angle with distance information (from parallax), allows
the photometric radius of the white dwarf to be measured (e.g., Kilic
et al. 2020). The photometric radius can then be combined with log 𝑔
to infer the mass of the white dwarf, and the MRR can be tested
(Schmidt 1996; Bédard et al. 2017; Bergeron et al. 2019). The prob-
lem with this approach, however, is that both the mass and the radius
are entirely derived from the atmospheric models and it is often
difficult to disentangle observed features of the MRR from system-
atic effects and degeneracies in the atmospheric models (Tremblay
et al. 2017). For more robust semi-empirical tests of the MRR, the
photometric radius needs to be combined with a mass determination
independent of atmospheric models.
For white dwarfs, it is also possible to obtain MRR information

from gravitational redshift measurements (Einstein 1916). The dif-
ficulty with this technique is that, for white dwarfs, the shift in the
absorption lines due to gravitational redshift is of a similar size to,
and degenerate with, the Doppler shift caused by radial motion. This
means that the observed shift in spectral lines is a combination of both
effects and the gravitational redshift signal can only be isolated if the
radial velocity of the white dwarf is precisely known. Determining
the radial velocity of a white dwarf is possible when it is in a binary
system by taking measurements of its companion (e.g., Joyce et al.
2018). The gravitational redshift can also be measured for groups
of white dwarfs that are co-moving (e.g., Pasquini et al. 2019), or
by averaging over random radial motions (e.g., Falcon et al. 2010;
Chandra et al. 2020). However, in all of these cases, a test of theMRR
using gravitational redshifts measurements requires an atmospheric
model-dependant photometric radius determination.
The most precise direct masses (and semi-empirical tests of the

1 These MRR tests still require limb darkening coefficients, but the adopted
values of the limb darkening coefficients impact the final physical parameters
typically below their statistical uncertainties (Parsons et al. 2017)
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Figure 1. Top: MMRs for 26 white dwarfs in eclipsing binary systems from
Parsons et al. (2017) and references therein. Both themasses and radii of these
object were determined directly. Figure reproduced from Fig. 9 in Parsons
et al. (2017).Bottom:MRRs for nearbywhite dwarfs in visual binary systems.
The masses for 40 Eri B, Procyon B, and Sirius B were determined from
astrometric measurement of their orbits (Bond et al. 2015, 2017a,b). The
mass for Stein 2051B was obtained via astrometric microlensing (Sahu et al.
2017). For comparison, the red curve shows the theoretical MRR for zero-
temperature white dwarfs with an iron (Fe) core (Hamada & Salpeter 1961).
Figure reproduced from Fig. 4 in Bond et al. (2017b). In both panels, the
theoretical MRRs for CO core white dwarfs were obtained from the cooling
models of Bédard et al. (2020).

MRR) for white dwarfs that are not post-common envelope (i.e.,
white dwarfs not in an eclipsing binary system), come from astro-
metric measurements of visual binary systems. In these particular
semi-empirical MRR tests, the radius of the white dwarf is derived
by fromfitting photometry and spectroscopy and so these tests remain
model-dependant and are not entirely from free systematic effects in
white dwarf atmospheric models (Tremblay et al. 2017). Fig. 1 shows
the MRR for nearby white dwarfs in visual binaries with direct mass
determinations; 40 Eri B (Bond et al. 2015), Procyon B (Bond et al.
2017a), and Sirius B (Bond et al. 2017b). Fig. 1 also shows Stein 2051
B, which also happens to be in a visual binary system but its mass has
been determined by astrometric microlensing (Sahu et al. 2017). All
of these objects have photometric radius determinations, and are in
agreement with the theoretical MRRs (Bédard et al. 2020). A semi-
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empirical test of the MRR for a single and isolated white dwarf has
yet to be performed.
Astrometric microlensing events offer unique opportunities to

measure the mass of isolated objects (e.g., Miralda-Escude 1996;
Kains et al. 2017; Rybicki et al. 2018; Dong et al. 2019; Sahu et al.
2022; Lam et al. 2022; Kaczmarek et al. 2022). When a foreground
lens with mass 𝑀L aligns closely enough with a more distant back-
ground source, the gravitational field of the lens deflects the light
of the background source forming a major and minor image of the
source. The major image is formed on the same side of the lens as the
source and the minor image on the opposite side of the lens. The two
images, lens, and unlensed source position always lie along the same
line (see e.g., Bramich 2018, for a review). As the lens intervenes
between the source and observer, the images change position causing
an apparent excursion of the source position (astrometric microlens-
ing; Høg et al. 1995; Miyamoto & Yoshii 1995; Walker 1995). For
the astrometric microlensing event considered in this work, we are
in a regime where the major image is resolved from the lens for
the duration of the event. In this case the astrometric shift due to
microlensing from the unlensed source position is (e.g., Sahu et al.
2017; Bramich 2018),

𝜹+ (𝒖) =
1
2

[√︁
𝑢2 + 4 − 𝑢

]
ΘE𝒖̂ (1)

Here, ΘE =

√︃
4𝐺𝑐−2𝑀𝐿 (𝐷−1

𝐿
− 𝐷−1

𝑆
) is the angular Einstein radius

of the lensing system (Chwolson 1924; Einstein 1936), and𝐺, 𝑐, 𝐷𝐿 ,
and 𝐷𝑆 are the gravitational constant, the speed of light, the distance
to the lens and the distance to the source, respectively. 𝒖 is the angular
lens-source separation vector pointing towards the source position in
units of ΘE or 𝒖 = (𝚽𝑆 − 𝚽𝐿)/ΘE = 𝜷/ΘE, where Φ𝐿,𝑆 denotes
the angular position of the lens and source, respectively. 𝑢 = |𝒖 | and
𝒖̂ denotes the unit vector. Crucially, if 𝜹+ can be measured during
the event and 𝐷𝐿 and 𝐷𝑆 are known, then 𝑀L can be inferred.
For an astrometric microlensing event to be monitored it first must

be found. Refsdal (1964) first noted that if the positions and proper
motions of celestial objects were known with sufficient accuracy,
then close alignments between them, and hence microlensing events,
could be predicted ahead of time. This is in contrast to the currently
dominant channel of finding photometric microlensing events, in
which hundreds of millions of stars are monitored in the Galactic
bulge and plane to catch event as they unfold (e.g., Mróz et al. 2019;
Kim et al. 2016; Husseiniova et al. 2021). Following the suggestion of
Refsdal (1964) and Paczynski (1995, 1996) many attempts to predict
microlensing events followed (Feibelman 1966, 1986; Sahu et al.
1998; Salim & Gould 2000; Proft et al. 2011; Sahu et al. 2014; Proft
2016; Lépine & DiStefano 2012; Harding et al. 2018). Follow-up of
these predictions has proven difficult because of imprecise astrometry
which lead to low confidence event predictions. Interest in predicting
events was reignited with the advent of astrometry from the Gaia
satellite (Gaia Collaboration et al. 2016a), orders of magnitude more
precise and numerous than any of its predecessors. First, using Gaia
Data Release 1 (Gaia Collaboration et al. 2016b),McGill et al. (2018)
made one high confidence prediction of an astrometric microlensing
event by a nearby white dwarf. Then, following Gaia Data Release 2
(Gaia Collaboration et al. 2018) many independent studies searched
for both astrometric and photometric events resulting in ∼ 5000
predictions (Klüter et al. 2018a,b; Bramich 2018; Bramich&Nielsen
2018; Mustill et al. 2018; Nielsen & Bramich 2018a; Ofek 2018;
McGill et al. 2019a,b, 2020). Most recently Klüter et al. (2021)
searched for predicted microlensing events using Gaia Early Data
Release 3 (GEDR3; Gaia Collaboration et al. 2021) finding 1758

new events, and Luberto et al. (2022) searched for events with brown
dwarf lenses.
Only two predicted astrometric microlensing events have been

successfully followed before this paper. Using the Hubble Space
Telescope (HST), Sahu et al. (2017) successfully detected the astro-
metric signal of the microlensing event originally predicted by Proft
et al. (2011) involving the nearby white dwarf Stein 2051B. The
astrometric microlensing signal permitted Sahu et al. (2017) to mea-
sure a gravitational mass for Stein 2051 B of 0.675± 0.051𝑀⊙ . This
marked the first ever detection of the astrometric microlensing effect
outside the solar system and provided a direct test of white-dwarf
evolutionary theory. Next, Zurlo et al. (2018) detected an astromet-
ric microlensing event using the Very Large Telescope. This event
was caused by our nearest stellar neighbour, Proxima Centauri, and
was originally predicted by Sahu et al. (2014). Using the astrometric
signal, Zurlo et al. (2018) determined the mass of Proxima Centauri
to be 0.150+0.062

−0.051𝑀⊙ . This marked the first direct gravitational mass
measurement of Proxima Centauri, and provided the only current
opportunity for a direct mass determination.
In this paper we present analysis of the follow-up of the astromet-

ric microlensing event caused by the nearby DQ-type white dwarf
LAWD 37 (WD 1142-645), originally predicted by McGill et al.
(2018). This event peaked in November 2019, with a predicted as-
trometric shift of 𝛿+ ≈ 2.8 mas. First, we describe the two sources
of data used in this analysis which are the multi-epoch astrometry
fromHST , and the astrometric solutions for the source and lens from
GEDR3. Next, in contrast to the analysis of the two previous pre-
dicted astrometric microlensing in Sahu et al. (2017) and Zurlo et al.
(2018), we detail the combination of these sources of data within
a fully Bayesian framework to infer the mass of LAWD 37. Then
we describe the concept of leave-one-out cross validation and use
it to compare different noise models of the data. We then use the
inferred gravitational mass from the astrometric microlensing event
as a semi-empirical test of the white dwarf MRR. Finally, we explore
the implications of this work on the follow-up of future predicted
microlensing events.

2 DATA

There are two sources of data used in this study. First, we have multi-
epoch HST observations of the lensed source position before, during
the predicted maximum of the event, and after. And, second, we have
the astrometric solution of the source and lens from GEDR3. These
astrometric solutions provide information on the unlensed source
and lens trajectories. The combination of these two sources of data
allows the astrometric shift due to microlensing to be measured, and
consequently, LAWD 37’s mass to be determined.

2.1 HST astrometric measurements

We have nine successful epochs of WFC3/UVIS HST observations
spanning over one year. A summary of these observation used to de-
termine the position of the source2 from HST programs GO- 16251,
15961, and 15705 (PI Kailash C. Sahu) is given in Table 1. All HST

2 Additionally, a series of WFC3/UVIS F814W short exposures (1.5s) were
taken at each epoch in an attempt to constrain the position of the lens which
was saturated in the long exposures. Unfortunately there were too few un-
saturated, high-signal-to-noise stars common to both exposures needed to
constrain the HST focus drift between the two exposure pointings. Therefore,
we did not use any HST data to constrain the lens position and instead relied

MNRAS 000, 1–21 (2022)



4 P. McGill et al.

Epoch Observation Filter Subarray Exposure Number of
date size (pixels) time (s) exposures

1 1 May 2019 F814W 2048x2048 95 5
2 18 Sep 2019 F814W 2048x2048 82 5
3 25 Oct 2019 F814W 2048x2048 89 5
4 10 Nov 2019 F814W 2048x2048 95 5
5 26 Nov 2019 F814W 1024x1024 85 13
6 5 Dec 2019 F814W 1024x1024 85 13
7 3 Jan 2020 F814W 1024x1024 85 13
8 5 May 2020 F814W 1024x1024 85 13
9 16 Sep 2020 F814W 1024x1024 85 14

Table 1. Summary of the HST WFC3/UVIS observations used to constrain
the position of the source. The subarray is the pixel subarray of the UVIS2
detector which were chosen to minimize Charge Transfer Efficiency (CTE)
effects. The data are from HST programs GO- 16251, 15961, and 15705 (PI
Kailash C. Sahu).

epochs were taken with moderate-sized dithers (±100 pixels) among
the pointings. The dither throw was small enough to allow all expo-
sures to the include about 20 stars that could serve as astrometric
references, but it was large enough to provide some control on Charge
Transfer Efficiency (CTE) and distortion residuals.
Figure 2 shows the path of LAWD 37 relative to the source star. In

epoch 7, the image of the source is largely occulted by LAWD 37’s
bleed column. In epochs 3 through 6, the bump-like features of the
point spread function (PSF) introduce considerable complications
into our measurement of the source’s location. For this reason, we
have developed amodel of the extended LAWD37 PSF in the F814W
images.
We combined together all the F814W images of LAWD 37 from

each of the 9 epochs and constructed a 4×-supersampled version of
the LAWD 37 image for that epoch. The top row in Fig. 3 shows the
9 stacked images (in the raw-pixel frame, so that the PSF features
will all have the same orientation). In order to subtract the PSF of
LAWD 37 at each epoch, we used an average of the PSFs constructed
from the other 8 epochs (since subtracting the PSF constructed from
the same-epoch images would remove the source, particularly at
close separations). As can be seen from Fig. 2, the source positions
are well separated from each other in different epochs, so that the
position measurements of the source are not adversely affected by
the presence of the source at other epochs. After this subtraction,
we noted that most of the subtracted images were quite clean, but
the fourth epoch has considerably larger subtraction residuals than
the others, presumably due to the telescope experiencing an unusual
focus level due to breathing (Anderson 2018). Unfortunately, this
fourth epoch also has the source very close to the lens, which means
that the position we measure for the source will be impacted by
considerable PSF-subtraction errors. Additionally, the observation
in this epoch also suffered from large focus variations. As a result,
the PSF subtraction at the position of the source showed large and
variable residuals, making the results unreliable. For these reasons,
we rejected the fourth epoch from further analysis.
In most of the exposures of epoch 7, the source’s brightest pixels

were just offset from the bleed-column and bleed-column-adjacent
pixels (see Fig. 2). Hysteresis in the readout amplifier causes some
slight correlation from column to column; this is negligible for pixels
of similar brightness, but it can be appreciable for low-value pixels

on the projected GEDR3 position of the lens which turned out to be more
than adequate for the analysis (see Sections 2.2 and 5.3).

Figure 2. HST F814W-band image cutouts (co-added stacks by epoch) for
each epoch of data during the LAWD 37 event. North is directly upwards in
each epoch. The source star is marked with a blue circle. LAWD 37 is the
saturated source moving from right to left. The images were made by stacking
all images in a given epoch. Dates of each epoch are indicated in Julian years.

side-adjacent to high-value pixels, such as one finds in bleed columns.
When the brightest pixel of a source is available, though, it is possible
to measure a position and flux. Normally when a position and flux is
measured, a 5x5 raster of pixels centered on the star’s brightest pixel
is used. For epoch 7, many of these pixels were corrupted by the
bleed column, so the fit-box was modified to only include legitimate
pixels.
The source can be seen close to LAWD 37 in the third, fourth,

fifth, and sixth epochs. We used the average PSFs from the eight
good-focus epochs (with the source and its vicinity masked out in
the relevant images) to construct an average F814W PSF for LAWD
37. Next, this average PSF was subtracted from the LAWD 37 image
in each of the individual _flc images, which were corrected for
CTE using the pixel-based correction (Anderson 2021). We then
fitted the source and the other reasonably bright stars (unsaturated
and a signal-to-noise ratio ≳ 50) in each of these images using the
F814W "library" PSF described in Sabbi & Bellini (2013). The PSF

MNRAS 000, 1–21 (2022)
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Figure 3. Top row: Detector-frame cutout imges (co-added stacks by epoch) of the inner 31×31 pixels (1240×1240 mas) of LAWD 37 for each of the epochs
(Epochs 1 to 9 are left to right). The "bumps" in PSF in the annular region between a radius of 7 and 10 pixels (marked in green on the plot) are clear. Bottom
row: The same images, but with the average LAWD 37 PSF subtracted (Epoch 4 was excluded from the average). The source can be seen close to LAWD 37 in
the third, fourth, fifth, and sixth epochs. The large vertical black region at the center of each of these images corresponds to the saturated pixels at the center of
each deep exposure of LAWD 37.

fits were done by a chi-squared-minimization fit of the PSF model3
to the star’s inner 3×3 pixels, after subtraction of a modal sky taken
from an annulus with radii 8 to 12 pixels (Anderson 2016). This small
fitting aperture was used in an effort to minimize any influence of
the LAWD 37 PSF-subtraction residuals on the fit. The fitting solved
for three parameters: a flux and a (𝑥,𝑦) position for each star in the
raw frames. These raw positions were then corrected for distortion
(Bellini et al. 2011).
The _flc images were corrected for CTE using the most recent

pixel-based correction (v2.0, which is currently in the WFC3/UVIS
pipeline). Even with this correction, there are small residual CTE-
related trends present. Since the various epochswere taken at different
telescope orientations, we can inter-compare the measured positions
to examine any residual trends. We used linear transformations to
map the distortion-corrected positions measured in each exposure in
the various epochs into the distortion-corrected frame of the first ex-
posure, using the positions of the unsaturated stars with S/N greater
than 100 in the reference exposure and the individual exposures. We
then fitted each star with an average position and proper motion. We
then transformed these modeled positions back into the individual
exposures to examine position residuals as a function of raw 𝑦 po-
sition and instrumental magnitude (𝑚 = −2.5 × log10𝐹𝑒, where 𝐹𝑒
is the flux in electrons). This allowed us to determine a simple table
𝑇 of relative corrections that removed the residual CTE trends as
a function of instrumental magnitude. This correction had the form
𝑇 [𝑚] (𝑦raw/2048), and its typical amplitude was ∼0.01 pixel.
The above analysis allowed us to construct generalized corrections

for astrometry in the individual exposures. In order to measure the
best possible reference-frame position for the source star over time,
we based the final transformations on stars within ±1 F814W mag-
nitude of the source star’s brightness and within 625 pixels (25′′)
of the source star’s position. There were 22 such stars. We used the
Gaia catalog to predict a reference-frame location for each of these
stars at the epoch of each exposure. We removed one star that had a
predicted parallax greater than 1 mas, just to be sure we are dealing
with distant stars.
Using the Gaia-predicted positions in the reference frame and the

observed, distortion and CTE-corrected positions of the stars, we
solved for a 6-parameter linear transformation from each observed

3 https://www.stsci.edu/hst/instrumentation/wfc3/
data-analysis/psf

image frame into the reference frame. We then examined the resid-
uals of this transformation and tweaked the positions and the proper
motions of the individual stars to improve the fits. Note that HST as-
trometric measurements are more precise than Gaia measurements,
particularly for stars at V∼18 or fainter, so it makes sense that the
reference-frame positions can be improved via this iteration, while
maintaining the average absolute properties of the reference frame
(zeropoint, scale, bulk motion, etc) that only Gaia can provide. At
this stage, one star was found to have larger than expected residuals,
likely due to an unresolved companion. This star was rejected, which
left us with 20 stars to use as the basis for the transformations into
the reference frame. These reference stars have a nominal position
precision of 0.02 pixel (0.8 mas) in each exposure, due to shot-noise,
read-noise, and small errors in the PSF model, all of which are ran-
dom sources of noise (see Fig. 2 in Bellini et al. 2014). Thus, we
have a distortion- and CTE-corrected position for each of 21 stars
(the source plus 20 good reference stars) in each of 87 exposure
frames. These positions are then used in the analysis that follows to
examine how the source position changes over time.
Since the PSF is known to vary with time, primarily as a conse-

quence of HST focus drift, there is a variation in the uncertainty in
the quality of the PSF for each epoch. It is important to mention that
the HST focus does not change gradually and predictably with time.
There is an overall trend, but variations during an orbit are larger than
the secular variations, and can only be determined after the fact (and
with some uncertainty). This means that there are significant PSF
variations within an orbit (∼ 6% peak-to-peak maximum variations
with respect to the library PSF; see Fig. 5 in Bellini et al. 2017).
Critically, this results in a correlated error in the target source posi-
tion within an epoch. Fig. 4 shows an example realization of noise
believed to corrupt the astrometric measurements of the target source
within an epoch. The lens PSF subtraction introduces a correlated,
within-epoch scatter in addition to the white instrument noise scatter.
In order to estimate the size of this correlated error for each epoch,
we repeat the PSF subtraction for each epoch with the PSF obtained
for each of the other epochs in succession. We use the distribution of
residuals as a proxy for the size of the within-epoch correlated error
in the target position. The mean of the distribution of the residuals
for each epoch (𝑚𝜎𝑒,corr ) are shown in Table 2.
In the analysis that follows, all astrometric data are on the tan-

gent plane projected at reference position right ascension 𝛼ref =

176.46045340◦, and declination 𝛿ref = −64.84488414◦, on the In-
ternational Celestial Reference System. Coordinate (𝛼ref, 𝛿ref) cor-
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X

Y

True source trajectory
True source positions
Data
Lens PSF subtraction noise
White noise

Figure 4. Schematic of how the source position data are believed to be
generated within an epoch. The data receive a correlated error from lens PSF
subtraction, which is the same for all data within an epoch (red). The data are
also scattered with white noise (blue).

Epoch 1 2 3 5 6 7 8 9

𝑚𝜎𝑒,corr mas 0.04 0.12 0.6 0.6 0.4 0.6 0.04 0.04

Table 2. Estimated sizes of the correlated noise standard deviation due to
the PSF subtraction in each epoch of data. These values were obtained via
simulated PSF subtraction. Note that the size of the correlated noise tends to
increase when the lens and source are closest. Epoch 4 is omitted due to the
reasons outlined in Section 2.1. The large scatter on epoch 7 is attributed to
the specialized measuring routine used to fit only the uncorrupted pixels due
to the source’s proximity to a charge bleed column (see Section 2.1)

responds to (1000, 1000) pixels in the reference-frame tangent plane
with the first coordinate, 𝑋 , having the direction of the local west unit
vector and, the second coordinate,𝑌 , having the direction of the local
north unit vector. Units in both of the coordinates are then scaled to
be 1 mas (1pixel=40 mas). In what follows we denote a position in
this tangent plane as, 𝜻 = [𝑋,𝑌 ].

2.2 Gaia astrometric solution

GEDR3 provides reference positions, proper motions, and parallax
values for both the source and lens. Additionally, each parameter’s
standard errors and correlations, which are derived from a linear least
squares fit of single-epoch astrometric measurements, are provided
(Lindegren et al. 2021). For GEDR3, the astrometric solutions are
based on measurements taken between July 2014 and May 20174.
The mean and covariance matrix for the source (GEDR3 source ID

5332606350796955904) astrometric parameters in the tangent plane

4 https://www.cosmos.esa.int/web/gaia/earlydr3

projection defined in Section 2.1 are,

𝒎G
𝑆
=


35186.9625
45709.7257

8.89044
0.03676
0.19940


, (2)

𝚺G
𝑆
= 10−1


0.2 −0.01 0.04 −0.06 −0.04

−0.01 0.2 −0.05 0.003 0.05
0.04 −0.05 0.3 −0.02 −0.02
−0.06 0.003 −0.02 0.3 0.07
−0.04 0.05 −0.02 0.07 0.3


. (3)

Here, the mean and covariance matrices have the parameter or-
der, 𝑋0,𝑆 , 𝑌0,𝑆 source reference positions (mas), 𝜇𝑋,𝑆 , 𝜇𝑌,𝑆 proper
motions in the 𝑋 and 𝑌 directions (mas/year), and 𝜋𝑆 paral-
lax amplitude (mas). Similarly, for the lens (GEDR3 source ID
5332606522595645952),

𝒎G𝐿 =


45825.73799
46592.48286
−2661.63959
−344.93250
215.67527


, (4)

𝚺G𝐿 = 10−3


0.2 −0.03 −0.02 −0.04 −0.03

−0.03 0.2 −0.03 0.01 0.07
−0.02 −0.03 0.3 −0.05 0.02
−0.04 0.01 −0.05 0.4 0.06
−0.03 0.07 0.02 0.06 0.3


. (5)

This astrometric information from GEDR3 for both the source and
lens will be used in Gaussian priors for the models described in Sec-
tion 3. Fig. 5 shows the GEDR3 predicted unlensed source trajectory,
and theHST astrometric measurements of the source.We can see that
there are clear offsets from the GEDR3 unlensed source trajectory in
the expected direction of predicted lensing signal, although the data
are clearly noisy.

3 MODELS

Fig. 5 shows that we are in a low signal-to-noise regime, as the offset
in the data relative to the projected GEDR3 unlensed position of the
source is comparable to the size of the scatter at each epoch. It is
therefore important that we investigate a range of models. In this
section we describe the different models that were fitted to the data,
and compared to one another. We fit models with and without the
astrometric lensing signal and with and without a correlated noise
component. We first address the choice of parameterisation of the
astrometric lensing signal. Next, we outline the different likelihoods
used in each of the models. Finally, we detail the prior distributions
used in each model and the methods used to sample the posterior
distributions in all models.

3.1 Parameterisation of the microlensing signal

Using the expression for 𝜹+ (Eq. 1), and calculating 𝜷, using the lens
and source trajectories, the lensed source position can be seen to be
dependent on 11 parameters,[
𝑋0,𝑆 , 𝑌0,𝑆 , 𝜇𝑋,𝑆 , 𝜇𝑌,𝑆 , 𝜋𝑆 , 𝑋0,𝐿 , 𝑌0,𝐿 , 𝜇𝑋,𝐿 , 𝜇𝑌,𝐿 , 𝜋𝐿 , 𝑀𝐿

]
. (6)

Specifically, the source (𝜽ast
𝑆

= [𝑋0,𝑆 , 𝑌0,𝑆 , 𝜇𝑋,𝑆 , 𝜇𝑌,𝑆 , 𝜋𝑆]) and
lens (𝜽ast

𝐿
= [𝑋0,𝐿 , 𝑌0,𝐿 , 𝜇𝑋,𝐿 , 𝜇𝑌,𝐿 , 𝜋𝐿]) astrometric parameters
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Figure 5. HST astrometric follow-up data during the predicted microlensing event by LAWD 37. Left: Single HST astrometric measurements coloured by time
are shown as circles. Measurements are clustered together in time within eight epochs of data. Also shown are 100 random samples of the source unlensed
projected trajectory from the GEDR3 astrometric solution. Specifically, projected trajectories corresponding to samples 𝜽ast

𝑆
∼ N(𝒎𝐺

𝑆
, 𝚺𝐺

𝑆
) , are shown in grey

and the black dashed line corresponds to 𝜽ast
𝑆

= 𝒎𝐺
𝑆
. Middle and right: Projections of the source data in the 𝑋 and 𝑌 directions, respectively. Small arrows

indicate the predicted direction of the astrometric deflection signal.

and the lens mass, 𝑀L. However, modeling the signal with these
parameters is not straightforward. This is due to the fact that parallax
enters the model in two different ways. Firstly, the source and lens
parallaxes control the lens and source unlensed trajectories and hence
the lens-source angular separation. Secondly, the lens and source
parallaxes enter as distance terms and control the size of ΘE. The
problem arises due to the interpretation of negative source parallax
values when trying to include the GEDR3 astrometric solution as
priors in the model.
The GEDR3 reported value of the source parallax with standard

error is 0.20 ± 0.16 mas, where some of the distribution 𝜋𝑆 < 0
(assuming a Gaussian distribution). Using negative parallax values
when 𝜋𝑆 enters the model in the source trajectory is fine as this
reflects uncertainty in the parallax component of source trajectory
and is physical. However, a negative 𝜋𝑆 value entering the model
as a distance term and re-scaling ΘE, is not physical. In this case, a
negative 𝜋𝑆 value would act to artificially increase ΘE and therefore
potentially bias the inference towards lower 𝑀L.
There are a number of ways to mitigate this problem. A simple

solution is that ΘE could be fitted for instead of 𝑀L. In this case the
astrometric parameters of the model would be [𝜽ast

𝑆
, 𝜽ast

𝐿
,ΘE]. Here

the prior on 𝜋𝑆 only enters the model as a trajectory term and hence
negative values are permitted. Finally, 𝑀L can then be extracted after
inferring a value for ΘE.

3.2 Likelihoods

In order to model the data, we need to setup a likelihood function that
encodes our beliefs as to how the data were generated. Specifically,
for all models, we assume the process that generated the data at time
𝑡𝑖 , for the source is of the form,

𝜻obs (𝑡𝑖 ; 𝜽 ,M𝑇𝑁 ) = 𝜻T (𝑡𝑖 ; 𝜽ast) + 𝝐𝑁 (𝑡𝑖 ; 𝜽noise). (7)

Here, 𝜻obs is the observed source position in the tangent plane given
by model M𝑇𝑁 with trajectory component 𝑇 and noise compo-

nent 𝑁 . 𝜻T is the unlensed source position predicted by trajectory
component 𝑇 with astrometric parameters 𝜽ast. 𝝐𝑁 is an additive
zero-mean Gaussian noise component 𝑁 with parameters 𝜽noise. We
consider two different trajectory models, with and without the astro-
metric lensing deflection term. The model without the deflection is,
𝜻T (𝑡𝑖 ; 𝜽ast) = 𝜻N (𝑡𝑖 ; 𝜽ast) ≡ 𝜻 (𝑡𝑖 ; 𝜽ast𝑆 ). Here,

𝜻 (𝑡𝑖 ; 𝜽ast𝑆 ) =
[
𝑋0,𝑆
𝑌0,𝑆

]
+ (𝑡𝑖 − 𝑡ref)

[
𝜇𝑋,𝑆
𝜇𝑌,𝑆

]
+ 𝜋𝑆J−1𝑹⊕ (𝑡𝑖) (8)

𝑹⊕ (𝑡) are Cartesian Barycentric solar system coordinates in au of
the Earth at time 𝑡. 𝑹⊕ (𝑡) was retrieved via the Astropy Python
package (Astropy Collaboration et al. 2013, 2018) which uses values
computed fromNASA JPL’sHorizons Ephemeris5. 𝑱−1 is the inverse
Jacobianmatrix of the transformation fromCartesian to spherical co-
ordinates (e.g., Urban&Seidelmann 2014, Section 7.2.2.3) projected
at the reference position (𝛼ref, 𝛿ref), and 𝑡ref = 𝐽2016.0 is the GEDR3
reference epoch. Eq. (8) is just the standard motion of the source
with proper motion and parallax. The model with the deflection
is 𝜻T (𝑡𝑖 ; 𝜽ast) = 𝜻D (𝑡𝑖 ; 𝜽ast) ≡ 𝜻 (𝑡𝑖 ; 𝜽ast𝑆 ) + 𝜹+ (𝑡𝑖 ; [𝜽ast𝑆 , 𝜽

ast
𝐿
,ΘE])

where 𝜽ast ≡ [𝜽ast
𝑆
, 𝜽ast

𝐿
,ΘE].

For all models, we assume that the noise is uncorrelated between
the 𝑋 and𝑌 directions. With this in mind, we can write the likelihood
for a set of𝐾𝑒 data pointswithin an epoch, 𝑒. Let the data in epoch 𝑒 be
denoted as 𝐷𝑒 = {𝒕𝑒, 𝑿𝑒,𝒀𝑒}, where the elements of 𝐷𝑒 are vectors
of length 𝐾𝑒, and represent the times, 𝑋 positions and 𝑌 positions
of all data points within epoch 𝑒, respectively. The likelihood of data
within an epoch 𝑒 is then,

𝑝(𝐷𝑒 |𝜽𝑒,M𝑇𝑁 ) =N
(
𝑿𝑒 |𝑿𝑇

𝑒 ( 𝒕𝑒; 𝜽ast),𝚺𝑁
𝑒 (𝜽noise𝑒 )

)
× N

(
𝒀𝑒 |𝒀𝑇

𝑒 ( 𝒕𝑒; 𝜽ast),𝚺𝑁
𝑒 (𝜽noise𝑒 )

) (9)

5 https://ssd.jpl.nasa.gov/?horizons
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Model
M𝐷𝐶 M𝐷𝑊 M𝑁𝐶 M𝑁𝑊

Deflection ✓ ✓ ✗ ✗

White noise ✓ ✓ ✓ ✓

Correlated
noise

✓ ✗ ✓ ✗

# of parameters 20 12 14 6
parameters 𝜽 𝜽ast

𝑆
,

𝜽ast
𝐿
, ΘE,

𝜎white,
𝝈corr

𝜽ast
𝑆
, 𝜽ast

𝐿
,

ΘE,𝜎white
𝜽ast
𝑆
,

𝜎white,
𝝈corr

𝜽ast
𝑆
,

𝜎white

Table 3. Summary of the components of the four considered models. Deflec-
tion indicates if the model contains the astrometric microlensing deflection
term. 𝝈𝑒 = [𝜎1,corr, 𝜎2,corr, ..., 𝜎𝑁𝑒 ,corr ] is the vector of correlated noise
parameters.

Here N is the 𝐾𝑒 dimensional multivariate Gaussian density, 𝜽𝑒 ≡
[𝜽ast, 𝜽noise𝑒 ], 𝑿𝑇

𝑒 ( 𝒕𝑒; 𝜽ast) and 𝒀𝑇
𝑒 ( 𝒕𝑒; 𝜽ast) are vectors of 𝑋 and

𝑌 source positions of length 𝐾𝑒 obtained by evaluating the vec-
tor of times 𝒕𝑒 for the trajectory model component 𝑇 . 𝚺𝑁

𝑒 (𝜽noise)
is a 𝐾𝑒 × 𝐾𝑒 covariance matrix. We consider two noise models
for the covariance matrix. An uncorrelated white noise model with
𝚺𝑁
𝑒 (𝜽noise𝑒 ) = 𝚺𝑊

𝑒 (𝜽noise𝑒 ) ≡ 𝜎2
white𝑰, where 𝑰 is the 𝐾𝑒 × 𝐾𝑒 unit

diagonal identity matrix, and 𝜽noise𝑒 ≡ [𝜎white]. We also consider a
correlated and white noise model with 𝚺𝑁

𝑒 (𝜽noise𝑒 ) = 𝚺𝐶
𝑒 (𝜽noise𝑒 ) ≡

𝚺𝑊
𝑒 ( [𝜎white])+𝜎2

𝑒,corr1, where 1 is the𝐾𝑒×𝐾𝑒 full ones matrix, and
𝜽noise𝑒 ≡ [𝜎white, 𝜎𝑒,corr]. The correlated noise model corresponds
to the data generation process shown in Fig. 4.
For all models, under the assumptions of independence between

𝑁𝑒 epochs of data, the likelihood over the full data set is,

𝑝(D|𝜽 ,M𝑇𝑁 ) =
𝑁𝑒∏
𝑒=1

𝑝(𝐷𝑒 |𝜽𝑒,M𝑇𝑁 ). (10)

Here, 𝜽 are all the model parameters and D = {𝐷𝑒}𝑁𝑒

𝑒=1 is the
full data set over all epochs. The consideration of two deflection
model components and two noise model components leads to four
distinct models to be investigated: a model with the deflection and
correlation noise -M𝐷𝐶 ; a model with the deflection and just white
noise -M𝐷𝑊 ; a model without the deflection and correlated noise
-M𝑁𝐶 , and a model without the deflection and just white noise -
M𝑁𝑊 . Table 3 contains a summary of the different models and their
components.

3.3 Priors

For the source and lens astrometric parameters (10 parameters to-
tal), there is prior information from GEDR3. Specifically we as-
sume multivariate normal distributions, 𝑝(𝜽ast

𝑆
) = N(𝒎G

𝑆
,𝚺𝐺

𝑆
), and

𝑝(𝜽ast
𝐿
) = N(𝒎G

𝐿
,𝚺𝐺

𝐿
) using the values in Eqs. (3) and (5).

There are three potential issues that need to be considered when
using the GEDR3 astrometric solution as priors on the source and
lens unlensed trajectory. The first two issues arise due to the im-
plicit assumption that the GEDR3 astrometric solution for both the
source and lens does not already contain some of the astrometric
microlensing signal. This is a possibility as astrometric microlensing
events typically have long tails (Dominik & Sahu 2000; Belokurov
& Evans 2002), and could overlap with the data used to build the
lens and source GEDR3 astrometric solutions. If the lens or source
astrometric solution does contain a detectable part of the astrometric
microlensing signal, this could potentially bias our inference as the

Parameter Prior Description

𝜽ast
𝑆

N(𝒎G
𝑆
, 𝚺𝐺

𝑆
) GEDR3 prior for the source trajec-

tory
𝜽ast
𝐿

N(𝒎G
𝐿
, 𝚺𝐺

𝐿
) GEDR3 prior for the lens trajectory

𝜎white N(𝑚𝜎white , 𝜎
2
𝑛) White component of the noise

𝑚𝜎white = 0.8, 𝜎𝑛 = 0.1
𝝈corr N(𝒎corr, 𝜎2

𝑛𝑰 ) Correlated components of the noise
for each epoch

ΘE U(20, 60) Flat prior of the angular Einstein ra-
dius

Table 4. Summary of the parameter priors used in the models.

lens and source astrometric parameters would not be representative
of the true unlensed lens and source trajectories.
Firstly, for the source, we have to check that when the GEDR3

data were taken, there was not a significant lensing signal present. As
LAWD37 is so brightGaia downloads cut-outs and carries out gating
so when the background object is within 500 mas it is downloaded
as part of the cut out but with less exposure time, otherwise, standard
one dimensional processing is used (Fabricius et al. 2016). GEDR3
is based on data collected between July 2014 and May 2017. In May
2017, the predicted deflection of the source is < 0.2 mas and the lens
source separation is >> 500mas. This is below the along scan (AL)
precision for a𝐺 ≈ 18 mag source (𝜎AL ≈ 0.8 mas with the standard
Gaia pipeline; Rybicki et al. 2018;Bramich 2018; Everall et al. 2021).
We therefore conclude that the astrometric lensing signal was not
detectable during the time GEDR3 data were collected and therefore
did not significantly influence the GEDR3 astrometric solution of
the source. Secondly, for the lens, we have to check if the shift due
to the blending with the minor image was detectable during GEDR3
(see Eq. (15) in Bramich 2018). In May 2017 this shift was ≈ 10−13

mas, we therefore safely conclude that the lens GEDR3 astrometric
solution does not contain a significant astrometric lensing signal.
Finally, we have to consider if the GEDR3 astrometric solution of

the 𝐺 ≈ 18 mag source has likely been influenced by the presence
of the comparatively bright 𝐺 ≈ 11 mag lens. The current Gaia
processing pipeline is able to resolve sources for separations in the
most optimal cases down to ≈ 200 mas (Arenou et al. 2018). While
the lens-source contrast ratio is far from optimal in our case, in May
2017, the lens and source had a predicted separation of ≈ 6400 mas.
At this separation, the lens and source were unlikely to be close to
each other on the Gaia focal plane during the GEDR3 time baseline.
Therefore, it is safe to conclude that the source GEDR3 astrometric
solution is unlikely to have been significantly affected by the presence
of the lens. Overall we conclude, for both the lens and source, the
GEDR3 solutions are safe to use as priors on the unlensed source and
lens trajectories in the models. Finally, it is worth mentioning that
the astrometric solution priors from GEDR3 will affect the precision
at which we can measure the mass of the lens, we defer discussion
of this point to Section 5.3.
For the white noise parameter present in all models, we set

𝑝(𝜎white) = N(𝜎white |𝑚𝜎white , 𝜎
2
𝑛) where 𝑚𝜎white = 0.8 mas and

𝜎𝑛 = 0.1 mas, reflecting the estimated instrument precision of
WFC3/UVIS (Bellini et al. 2014). For the correlated noise param-
eters 𝝈corr = [𝜎1,corr, 𝜎2,corr, ..., 𝜎𝑁𝑒 ,corr] we assume a Gaussian
prior 𝑝(𝝈corr) = N(𝝈corr |𝒎corr, 𝜎2

𝑛 𝑰), truncated at zero to avoid
negative values. Here, 𝒎corr = [𝑚𝜎1,corr , 𝑚𝜎2,corr , ..., 𝑚𝜎𝑁𝐸 ,corr ] are
the estimated size of the correlated noise components in Table 2
and we have assumed no correlation between epochs. Finally, we
then assume a uniform prior on ΘE, as 𝑝(ΘE) = U(ΘE |lower =
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Figure 6. Probabilistic graphical model showing the dependence structure
of the models considered in this work. An arrow from one node to another
indicates a conditional dependence. No arrow between two nodes means they
are conditionally independent. Unfilled circles are latent random variables
in the models or parameters that are fitted for. Filled small circles are fixed
values in the model (parameters for the informative prior distributions). The
shaded circles are the observed data. Parameters inside a plate are repeated
for each epoch and then direction. Parameters outside the plates are global
parameters. Black parts of the graph are common to all models considered.
Purple parts are common to models with an astrometric deflection. Pale green
parts of the graph are common to models with correlated noise.

20 mas, upper = 60 mas). This prior was chosen to be wide enough
to be uninformative, yet narrow enough to constrain the model to
reasonable areas of the parameter space which allowed fast model
fitting. In all models, we build the full prior by taking the product
over all the priors of the required parameters. Table 4 contains a sum-
mary of all parameter priors, and Fig. 6 shows the probabilistic graph
illustrating all parameter dependencies and structure of the models.

3.4 Sampling the posterior

Now that we have constructed the prior and likelihoods for each
model, we may compute the posterior distribution on the model
parameters. The posterior distribution or the probability distribution
of the model parameters given the data, is given by Bayes rule,

𝑝(𝜽 |D,M) = 𝑝(D|𝜽 ,M)𝑝(𝜽 |M)
𝑝(D|M) ∝ 𝑝(D|𝜽 ,M)𝑝(𝜽 |M). (11)

We obtain samples from the posterior distribution using an MCMC
algorithm. Specifically, we use the No-U-Turn Sampler (NUTS)
Hamiltonian Monte Carlo algorithm (Homan & Gelman 2014) im-
plemented by the PyMC3 Python package (Salvatier et al. 2016).
NUTS allows samples from the posterior distribution to be obtained
faster than other traditional MCMC samplers (e.g., Foreman-Mackey

et al. 2013) because it uses first-order gradient information to effi-
ciently step through the parameter space. We also take advantage of
using the dense full mass matrix step implemented in the Exoplanet
Python package for further performance gains (Foreman-Mackey
et al. 2021).
For each model investigated in this work, we run NUTS for 2000

tuning steps and then for a further 10, 000 steps. This is done for two
independent chains to permit between-chain convergence checks.
Specifically, we compute the rank-normalized 𝑅̂ convergence diag-
nostic for each inference in this analysis. 𝑅̂ measures convergence
by comparing between-chain and within-chain variance for each pa-
rameter. A value 𝑅̂ > 1.01 indicates poor convergence (Vehtari
et al. 2021). We find for all parameters in all inferences considered,
𝑅̂ = 1.0, meaning good convergence. Running both chains for a
model typically took 10 Central Processing Unit (CPU) minutes.

4 MODEL COMPARISON AND CRITICISM

4.1 Leave-one-out cross-validation

We are fitting four models to the data. M𝐷𝐶 - a model with the
astrometric microlensing deflection and correlated noise,M𝐷𝑊 - a
model with the astrometric microlensing deflection and just white
noise,M𝑁𝐶 - a model with no astrometric microlensing deflection
but with correlated noise, and finally, M𝑁𝑊 - a model with no
astrometric microlensing deflection and just white noise. We then
need to assess which model best explains the data and critically
examine the strengths andweakness of each of themodels. To do this,
we use the Bayesian Leave-One-Out cross-validation score (LOO).
LOO is one method to estimate point-wise out-of-sample prediction
accuracy of a given model (Vehtari et al. 2017). LOO is calculated
for a given model by fitting the model to the data set where one of the
data points has been left out. The posterior samples of that fit are then
projected through themodel likelihood to assess howwell the left-out
data point is predicted by the model. The procedure is then repeated
so each data point is left out in turn. For a given model, this provides
a per data point score which can be totalled over the data to give
an indication of overall model performance, or compared data point-
wise with a different model allowing an interpretable comparison
between models.
Specifically, for a modelM, which being fit to the full data setD,

the LOO score for the 𝑖th data point, 𝐷𝑖 = {𝑡𝑖 , 𝑋𝑖 , 𝑌𝑖}, is

LOO𝑖,M = log 𝑝(𝐷𝑖 |D−𝑖 ,M). (12)

HereD−𝑖 is the full data setD with the 𝑖th data point or 𝐷𝑖 removed.
This is the log of the LOO predictive density conditioned on the data
set without the 𝑖th data point. It can be written in terms of expected
value of the likelihood of the left-out data point over the posterior
distribution obtained while fitting the model to D−𝑖 ,

𝑝(𝐷𝑖 |D−𝑖 ,M) =
∫

𝑝(𝐷𝑖 |𝜽 ,D−𝑖 ,M)𝑝(𝜽 |D−𝑖 ,M)𝑑𝜽 . (13)

Practically, if we have S samples from the posterior distribution of
the model parameters {𝜽𝑠−𝑖}

𝑆
𝑠=1, obtained by fitting modelM to the

data set D−𝑖 , we can use these samples to compute Eq. (13) as,

𝑝(𝐷𝑖 |D−𝑖 ,M) = 1
𝑆

𝑆∑︁
𝑠=1

𝑝(𝐷𝑖 |D−𝑖 , 𝜽
𝑠
−𝑖 ,M). (14)

Here, we have assumed that we have a sufficient number of samples
to fully capture the posterior distribution (Gelman et al. 2014).
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This quantity can be totaled over the data to give an overall score
for modelM,

LOOM =

𝑁∑︁
𝑖=1
LOO𝑖,M . (15)

Alternatively the difference can be used to compare the performance
of two modelsM1 andM2,

ΔLOOM1 ,M2 = LOOM1 − LOOM2 . (16)

Here, a positive value indicates thatM1 has a higher computed out-
of-sample predictive accuracy thanM2. The standard error (se), on
this difference is given by Vehtari et al. (2017) as,

se
(
LOOM1 ,M2

)
=

√︃
𝑁V𝑁

𝑖=1 (LOO𝑖,M1 − LOO𝑖,M2 ). (17)

𝑉𝑁
𝑖=1 is the variance of the point-wise difference over the full data
set of N data points. This can be used to assess how significant
the difference between two models is. For brevity, we define the
significance of the difference as sig(•) = | • |/se(•) where • =

LOOM1 ,M2 .
In the case of this analysis, it is also informative to sum over

the point-wise LOO score over the data in a single epoch, 𝑒. This is
because the data are tightly temporally clustered within an epoch, and
in the correlated noise models (M𝐷𝐶 ,M𝑁𝐶 ), data within an epoch
share correlated noise properties. We define the difference in LOO
predictive accuracy over an epoch 𝑒, as ΔLOO𝑒M1 ,M2

. This quantity
is analogous toΔLOOM1 ,M2 (defined in Eqs. 15 and 16), but instead
of summing the point-wise score over all data points, the sum is taken
only over the data in epoch, 𝑒. The standard error, se(ΔLOO𝑒M1 ,M2

),
is also calculated analogously by instead calculating the variance of
the point-wise difference of data within the epoch. In this case, 𝑁
in Eq. 17 is the total number of data points within epoch 𝑒. Overall,
computation of ΔLOO𝑒M1 ,M2

will permit the comparison of models
at epoch resolution.
Calculating all LOO𝑖,M terms for all models is computationally

expensive. This is because it would require 𝑁 full refits (obtaining
samples from the posterior distribution) of the model with each data
point left out in turn. In our case, 𝑁 = 81 and a single refit of a
model takes ≈ 10 CPU minutes, therefore computing all LOO𝑖,M
terms for the four considered models would take ≈ 55 CPU hours of
computation. While not completely unfeasible, the required compu-
tation is still significant.We therefore turn to an importance sampling
approximation to compute the LOO𝑖,M terms for each model.
We use the Pareto Smoothed Importance Sampling (PSIS; Vehtari

et al. 2015) approximation to compute the LOO𝑖,M terms for each
model (Vehtari et al. 2017; Bürkner et al. 2020), implemented in the
Arviz Python package (Kumar et al. 2019). Instead of refitting the
model with each data point left out in turn, in the PSIS approximation
the model is initially fit to the full data set. Then posterior samples
from the full data set fit are re-weighted (via importance sampling)
to approximate the effect of removing each data point in turn. Over-
all PSIS allows the fast and approximate computation of the LOO
terms for a model with very few refits. Appendix A contains the
application details of the PSIS approximation along with checks of
the approximation accuracy for the models considered in this work.

4.2 The case for LOO over other comparison metrics

LOO is just one of many metrics that can be computed to assess the
performance of amodel. In this section, we briefly justify the decision
to use LOO as a model criticism and comparison tool compared to

the two commonly used approaches in astronomy: a reduced Δ𝜒2

approach, and use of the Bayesian model evidence.
Typically in microlensing event analyses, albeit in analyses of

photometric microlensing events, a reduced Δ𝜒2 approach is used
to select between competing models (e.g., Bond et al. 2004; Smith
et al. 2005; Alcock et al. 2000; Bennett et al. 2018). There is a
multitude of reasons why we do not use it here and choose LOO
instead. Firstly, because some of the models considered in this work
contain Gaussian-correlated noise components, reduced Δ𝜒2 is no
longer fully descriptive of the likelihood of themodel (reducedΔ𝜒2 is
only related to the likelihood of an uncorrelated Gaussian likelihood
with a diagonal covariance matrix). Secondly, reduced Δ𝜒2 is only
valid for a model that is linear in its parameters; none of the models
considered in this work are linear in all their parameters. Thirdly,
reduced Δ𝜒2 fails to account for any posterior uncertainty on the
parameters. Andrae et al. (2010) gives an extensive account of the
pitfalls of using reduced Δ𝜒2 for comparison of non-linear models.

Comparison of models using the Bayesian evidence (the denom-
inator in Eq. 11) is becoming popular in astrophysics due to nested
sampling algorithms that readily allow its computation (e.g., Skilling
et al. 2006; Higson et al. 2019; Speagle 2020). TheBayesian evidence
has the appealing properties of fully capturing parameter uncertainty
and naturally penalizesmore complexmodels that do not significantly
explain the data better. The critical downside, however, is that the ev-
idence is sensitive to the choice of prior distribution (see e.g., Fong
& Holmes 2020). This becomes a problem when comparing models
possessing parameters with uninformative and somewhat arbitrarily
set prior distributions (see e.g., Section 7.2 of Gelman et al. 2013).
For example, for ΘE in this analysis, the arbitrary choice of a large
width for its uninformative prior can arbitrarily change the model
evidence without any resulting change of the posterior distribution.
Comparatively, LOO is typically less sensitive to the model priors.

This is because each LOO𝑖,M term is computed with the model con-
ditioned on the rest of data (Eq. 13). This means in scenarios where
the number of data points is large, the prior can be overwhelmed by
the likelihood and has less of an effect on each LOO𝑖,M term. In the
analysis presented in this work, although the number of fitted data
points is 81, it is difficult to asses if this constitutes a large data set due
to the use of informative priors on the source and lens astrometry, and
the noise components of the models. Finally, the Bayesian evidence
only provides a single summary statistic for the whole model and
data, shedding little light on precisely where a model fails, whereas
LOO provides an interpretable per data point score.

5 RESULTS

5.1 Performance of the models

All models (M𝐷𝐶 ,M𝐷𝑊 ,M𝑁𝐶 ,M𝑁𝑊 ) were fitted to the data.
Posterior parameter summaries for all parameters can be found in
Table 5, and posterior projections of the model over the data are
shown in Fig. 7. Additionally, LOO scores were computed for all
models as described in Section 4.1.
Table 6 shows the pairwise comparison between all model com-

binations and the total LOO scores. M𝐷𝐶 (deflection and cor-
related noise model) has the best overall LOO score when com-
pared to all other models.M𝑁𝑊 is the least preferred model with
all other models having a higher score. The model most com-
petitive with M𝐷𝐶 , is M𝑁𝐶 with ΔLOOM𝐷𝐶 ,M𝑁𝐶

= 8.6 and
sig(ΔLOOM𝐷𝐶 ,M𝑁𝐶

) = 1.5. This means that the correlated com-
ponent of the noise is an important feature of the model, since
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Parameter Unit Model
M𝐷𝐶 M𝐷𝑊 M𝑁𝐶 M𝑁𝑊

𝑋0,𝑆 mas 35186.9970.127
−0.128 35187.0270.124

−0.123 35186.9430.126
−0.125 35186.9460.122

−0.125
𝑌0,𝑆 mas 45709.7050.125

−0.124 45709.6750.121
−0.122 45709.7260.125

−0.124 45709.7410.123
−0.122

𝜇𝑋,𝑆 mas/year 8.9640.044
−0.043 8.9920.040

−0.040 9.0110.045
−0.045 9.0420.045

−0.044
𝜇𝑌,𝑆 mas/year 0.0280.047

−0.047 −0.0120.046
−0.047 0.1590.046

−0.046 0.2890.043
−0.044

𝜋𝑆 mas 0.1230.110
−0.111 0.0430.101

−0.098 0.1270.121
−0.121 0.0700.115

−0.114
𝜎white mas 0.8380.044

−0.041 0.9930.046
−0.044 0.8820.046

−0.045 1.2250.051
−0.048

𝑋0,𝐿 mas 45825.7380.014
−0.014 45825.7380.013

−0.014 - -
𝑌0,𝐿 mas 46592.4830.015

−0.015 46592.4830.015
−0.015 - -

𝜇𝑋,𝐿 mas/year −2661.6400.018
−0.018 −2661.6400.018

−0.018 - -
𝜇𝑌,𝐿 mas/year −344.9320.019

−0.019 −344.9320.020
−0.019 - -

𝜋𝐿 mas 215.6750.018
−0.018 215.6760.018

−0.018 - -
ΘE mas 31.3532.077

−2.184 34.1641.386
−1.440 - -

𝜎1,corr mas 0.0810.077
−0.055 - 0.0840.083

−0.057 -
𝜎2,corr mas 0.1270.090

−0.075 - 0.2060.097
−0.103 -

𝜎3,corr mas 0.5970.097
−0.099 - 0.6270.096

−0.094 -
𝜎5,corr mas 0.6200.096

−0.093 - 0.7410.082
−0.080 -

𝜎6,corr mas 0.3800.098
−0.099 - 0.4770.087

−0.083 -
𝜎7,corr mas 0.6810.087

−0.085 - 0.7190.083
−0.081 -

𝜎8,corr mas 0.0780.077
−0.053 - 0.1200.094

−0.078 -
𝜎9,corr mas 0.0850.078

−0.057 - 0.1050.090
−0.069 -

Table 5. Parameter posterior summaries for each model. Values are the posterior medians, uncertainties are the 84th-50th and 50th-16th posterior percentiles.
’-’ indicates that the considered model does not contain the parameter.

the deflection model with just white noise (M𝐷𝑊 ) is compara-
bly not competitive withM𝑁𝐶 . In fact, Table 6 shows thatM𝑁𝐶

is preferred over M𝐷𝑊 with ΔLOOM𝑁𝐶 ,M𝐷𝑊
= −20.9 and

sig(ΔLOOM𝑁𝐶 ,M𝐷𝑊
) = 2.2. That is, the non-deflection corre-

lated noise model is preferred over the model with the deflection and
just white noise. While M𝐷𝐶 is the overall preferred model, it is
informative to understand how exactlyM𝑁𝐶 is able to explain the
data with no deflection term and even beat the deflection model with
just white noise,M𝐷𝑊 .

The starting point for understanding the good performance of
M𝑁𝐶 is to examine the per-epoch LOO scores. Fig. 8 shows the
per-epoch LOO scores for M𝐷𝑊 and M𝐷𝐶 compared to M𝑁𝐶 .
For the comparison of the two correlated noise models (M𝐷𝐶 versus
M𝑁𝐶 ), it is shown thatM𝐷𝐶 marginally beatsM𝑁𝐶 in every epoch
with the exception of epoch 2 whereM𝐷𝐶 is more clearly preferred
and epoch 7 whereM𝑁𝐶 beatsM𝐷𝐶 . The reason whyM𝑁𝐶 can
explain the epoch with the largest deflection terms (epochs 5, 6, and
7), is that it inflates the correlated noise and alters the unlensed source
trajectory.

Fig. 9 shows the priors and posterior distributions of the noise
parameter in all of the models. For the correlated noise parameters,
M𝑁𝐶 inflates the size of the noise parameters relative toM𝐷𝐶 and
the prior for epochs 5, 6 and 7.M𝑁𝐶 does this to try and explain the
deflection signal. For epoch 2, the correlated noise term in M𝑁𝐶

is slightly inflated compared toM𝐷𝐶 and the prior. At first glance,
this seems counterintuitive because the deflection at epoch 2 is small.
This begs the question as to what signalM𝑁𝐶 is trying to explain
away with increased correlated noise. The reason for this is that,
although the signal at epoch 2 is small, so is the estimated magnitude
of the correlated noise, and so epoch 2 has one of the highest signal-

ΔLOOrow,column
M𝐷𝐶 M𝐷𝑊 M𝑁𝐶 M𝑁𝑊

M𝐷𝐶 - 29.5(3.5) 8.6(1.5) 76.5(4.6)
M𝐷𝑊 −29.5(3.5) - −20.9(2.2) 47.1(3.4)
M𝑁𝐶 −8.6(1.5) 20.9(2.2) - 67.9(5.4)
M𝑁𝑊 −76.5(4.6) −47.1(3.4) −67.9(5.4) -

LOOM −215.6 −245.0 −224.1 −292.1
se(LOOM ) 38.3 37.8 33.2 26.0

Table 6. Pairwise difference in LOO scores for all models considered.
Positive number means the model in the row is preferred. Significance,
sig(ΔLOOrow,column), of the scores are indicated in with the parentheses.
Total LOO score for each more and its standard error are shown in the bottom
two rows. In order of descending LOO score (highest to lowest predictive
accuracy) the models areM𝐷𝐶 ,M𝑁𝐶 ,M𝐷𝑊 andM𝑁𝑊 .

to-noise ratios of all the epochs. Overall, this means correlated noise
can mimic the deflection signal. It is noted that in epoch 7 and
for the white noise both M𝑁𝐶 and M𝐷𝐶 inflate the noise terms
relative to the prior. This suggests that the priors underestimate both
of these quantities. It is also noted that for models missing either the
correlated noise or the deflection signal, the white noise is increased
to compensate relative toM𝐷𝐶 and the prior.
Fig. 10 shows the GEDR3 priors and posterior distributions of

the source astrometric parameters. While there is broad agreement
between all models for the source proper motion in the 𝑋 direction
and the source parallax,M𝑁𝐶 andM𝐷𝐶 disagree on theY direction
proper motion posterior.M𝐷𝐶 infers 𝜇𝑌,𝑆 = 0.028+0.047

−0.047 mas/year,
whereasM𝑁𝐶 infers 𝜇𝑌,𝑆 = 0.159+0.046

−0.046 mas/year. The relatively
high value inferred byM𝑁𝐶 is caused byM𝑁𝐶 trying to explain
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Figure 7. Posterior realizations plotted over the data in the X and Y directions and for each of the considered models. Coloured bands show the 84th-16th
posterior percentiles on the inferred source trajectory for eachmodel and direction. Dark (light) grey bands are the posterior data realizations 16th-84th (2nd-98th)
percentile bands. Specifically this includes the trajectory and the noise model component realizations. The posterior data realizations are discontinuous between
epoch because the noise model is only defined within an epoch and on the data grid.

away the positive Y direction deflection (see e.g., Fig. 7) by altering
the source trajectory. This means that further data taken after the
event to pin down 𝜇𝑌,𝑆 could completely rule outM𝑁𝐶 as a viable
model. Encouragingly, we note that for all models the lens and source
astrometric parameters are consistent with the GEDR3 priors (see
Figs. B2 and B1 in Appendix B).
The reason for the better performance of M𝐷𝑊 compared with

M𝑁𝐶 in epoch 2 is a high signal-to-noise deflection (as mentioned

earlier), combined with the inflexibility of the source trajectory to be
altered to explain away an offset in the negative 𝑋 direction. This is
due to the asymmetrical deflection in the 𝑋 direction being in the
negative (before the closest approach) then positive (after the closest
approach) 𝑋 direction. The source trajectory cannot be altered in
M𝑁𝐶 to account for both of these offsets, soM𝑁𝐶 performs worse
thanM𝐷𝐶 in epoch 2. The better performance ofM𝑁𝐶 compared
to M𝐷𝑊 in epoch 7 is due to the outlying data within that epoch
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Figure 8. LOO score of models M𝐷𝐶 and M𝐷𝑊 compared to M𝑁𝐶

within each epoch. Error bars are one standard error.

(see Fig. 7). These outlying data are located at lower 𝑌 values which
are further away from the deflection trajectory of M𝐷𝐶 than the
unlensed trajectory ofM𝑁𝐶 .
For the per-epoch comparison ofM𝑁𝐶 andM𝐷𝑊 , Fig. 8 shows

thatM𝑁𝐶 beatsM𝐷𝑊 in every epoch apart from epoch 2. The rela-
tive performance ofM𝑁𝐶 andM𝐷𝑊 can be explained by the same
reasoning used above, for theM𝐷𝐶 andM𝑁𝐶 epoch comparison.
In epoch 5, Fig. 8 showsM𝐷𝑊 clearly performs worse thanM𝑁𝐶 ,
despite there being a large deflection signal in epoch 5. This is due to
epoch 5 also having a large correlated noise estimate (𝑚𝜎𝑒,corr = 0.6
mas) whichwhite noiseM𝐷𝑊 cannot explain away, even by inflating
the size of the white noise (see Fig. 9).
Fig. 5 shows that epoch 7 has a large scatter in the data compared

with all of the other epochs. This is due to the source lying close
to a column bleed as shown in Fig. 2, which meant a specialized
measuring procedure to fit only the uncorrupted pixels had to be used.
This could mean that the data in epoch 7 are particularly unreliable.
Furthermore, because all of the data in epoch 7 are potentially effected
by the source’s proximity to the charge bleed column a LOO analysis
is not sensitive to this, since withholding one epoch 7 data point
leaves in the remaining 12. Therefore as a safety check we compare
the two best models M𝐷𝐶 and M𝑁𝐶 whilst leaving all of epoch
7 out of the analysis. In this case LOOM𝐷𝐶

= −95.2 ± 7.9 and
LOOM𝑁𝐶

= −103.8±7.2. This means the model with the deflection
and correlated noise is still preferred overM𝑁𝐶 , but with slightly
higher significance, sig(ΔLOO)= 2.7. Overall, the model selection
conclusions are not sensitive to including or withholding of epoch 7
forM𝐷𝐶 andM𝑁𝐶 .

5.2 Inference on the angular Einstein radius

Both models including the astrometric lensing deflection signal
(M𝐷𝑊 and M𝐷𝐶 ), provide a posterior inference on ΘE. Fig. 11
shows the ΘE marginal posterior distribution for both the M𝐷𝑊

and M𝐷𝐶 models, along with the prior used in both models. For
M𝐷𝑊 andM𝐷𝐶 , the inferred values are ΘE = 34.2+1.4

−1.4 mas and
ΘE = 31.4+2.1

−2.2 mas, respectively. Here the values and upper and
lower error bars represent the 50th, 84th-50th, and 16th-50th pos-
terior percentiles, respectively. Fig. 11 shows that M𝐷𝑊 provides
a tighter constraint and slightly higher value of ΘE compared with

M𝐷𝐶 . It is also shown that theM𝐷𝐶 ΘE posterior distribution is
slightly asymmetrical with more probability mass towards lower ΘE
values.
The difference in the ΘE posteriors betweenM𝐷𝑊 andM𝐷𝐶 is

consistent with the findings in Section 4. In Section 4, it was shown
that the correlated noise part of the model (with help from a pos-
itive 𝜇𝑌,𝑆) can mimic or explain away some of the microlensing
signal. Therefore, jointly fitting both the correlated noise and the mi-
crolensing signal means the observed offset on position explanation
is shared amongst the microlensing signal and correlated noise, caus-
ing a slightly lower posterior median ΘE (as 𝛿+ ∝ ΘE for 𝑢 ≫ 1) for
M𝐷𝐶 compared withM𝐷𝑊 . Conversely, because the white noise
model in M𝐷𝑊 cannot explain correlated noise at each epoch, it
inflates the values of ΘE to compensate. The larger spread in the ΘE
posterior forM𝐷𝐶 is likely similarly due to the fact the correlated
noise can mimic the microlensing signal, mean that there is some
degeneracy between them, which ultimately leads to a less certain
inference on ΘE inM𝐷𝐶 .
We now use the posterior samples to calculate an inferred value

for 𝑀L, the mass of LAWD 37. Inverting the expression for ΘE, we
can write the 𝑀L in terms ΘE and 𝜋𝐿 − 𝜋𝑆 . Of course, we run into
the same difficulties described in Section 3.1 of negative 𝜋𝑆 values
entering as distance terms in ΘE. This is not a problem because the
source is so distant, 𝜋𝑆 ≈ 0.1mas, compared with the lens, 𝜋𝐿 ≈ 215
mas, we can approximate 𝜋𝐿 − 𝜋𝑆 ≈ 𝜋𝐿 . Under this approximation
we get 𝑀L for the correlated noise model, 𝑀𝐿 = 0.56 ± 0.08𝑀⊙ ,
and 𝑀L for the white noise model, 𝑀𝐿 = 0.66+0.06

−0.05𝑀⊙ . Here, we
report the 50th, 84th-16th, and 50th-16th posterior percentiles. We
note inclusion of 𝜋𝑆 both with negative posterior samples and with
the negative posterior values truncated, does not change the reported
mass values or uncertainties for either model.
We also find that leaving out all of the data in epoch 7 (for

the reasons mentioned at the end of Section 5.1) does not sig-
nificantly change the inference on the lens mass for M𝐷𝐶 –
𝑀L = 0.54 ± 0.06𝑀⊙ when all of epoch 7 is withheld. The mass
uncertainty is slightly smaller indicating epoch 7’s large spread is
inflating the uncertainty in the final mass inference. Overall, the lens
mass inference is not sensitive to the including or withholding of
epoch 7.

5.3 Prior sensitivity

We can check how sensitive the posterior inference on ΘE is to the
prior assumptions inM𝐷𝐶 . Specifically, we can test how tightening
or relaxing the prior parameter distributions affects the ΘE posterior
distribution with the view of determining which of our assumptions
strongly affect our inferences. For both the lens and source unlensed
trajectory, we used informative Gaussian priors from GEDR3. The
right panel of Fig. 12 shows how changing (inflating or shrinking by
a multiplicative factor) the GEDR3 prior covariance matrix on the
source (𝚺𝐺

𝑆
) or lens (𝚺𝐺

𝐿
), changes the ΘE posterior constraint. Fig.

12 shows that the inference on ΘE is insensitive to changing 𝚺𝐺
𝐿
.

Specifically, the posterior constraint on ΘE does not degrade until
𝚺𝐺
𝐿
is inflated by a factor of 10002 (or equivalently multiplying the

standard deviation by a factor of 1000). Moreover, it is also shown
that shrinking 𝚺𝐺

𝐿
(even shrinking by a factor of 10002) does not

improve the posterior constraint on ΘE. This means that further data
on the lens position, either by future Gaia data releases or further
HST monitoring, is unlikely to improve the constraint on ΘE.
The right panel of Fig. 12 also shows the effect of changing the

source unlensed trajectory prior covariance matrix 𝚺𝐺
𝑆
, specifically
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Figure 9. Prior and marginal posterior probability density functions for the noise parameters in the different models. Vertical dashed lines show the values
of these parameters estimated from the PSF subtraction simulations (Table 2). The prior probability density function is shaded to aid differentiation with the
posteriors. Note that the models with no correlated noise, M𝐷𝑊 and M𝑁𝑊 , do not have correlated noise parameters and therefore, only the posteriors on
𝜎white are shown.

that the outcome is somewhatmore sensitive to the prior on the source
unlensed trajectory compared with the lens trajectory. Fig. 12 shows
that inflating the prior by a factor of 102 immediately starts to degrade
the inference onΘE, although the degradation does level off past this
point. This is likely because at an inflation level beyond 1002, the
source unlensed trajectory is completely determined by theHST data
and the source unlensed trajectory prior becomes uninformative.

More importantly however, shrinking the prior on the unlensed
source trajectory does improve the posterior constraint onΘE. Specif-
ically, an improvement of a factor of 102 in the prior covariance of the
source unlensed trajectory would lead to a maximum improvement
in the 16th-84th posterior constraint on ΘE of ≈ 1 mas (correspond-
ing to a 7% improvement on 84th-16th percentile constraint on 𝑀L).
While an improvement of a factor of 102 of the source astrometry
covariance matrix is unlikely to be achieved, this means that further
astrometric data pinning down the unlensing source trajectory either
by future Gaia data releases or HST will likely improve the poste-
rior constraint on ΘE. Assuming a more realistic improvement of
22 on the source astrometry covariance matrix, corresponds to a 3%
improvement on 16th-84th percentile constraint on 𝑀L.

The left panel of Fig. 12 shows the effect of inflating or shrinking
the standard deviation on the Gaussian prior for the noise parame-
ters (𝜎𝑛), both correlated and white. The means of these priors were
informed by lens PSF subtraction simulations and WFC3/UVIS in-
strument precision, in the case of the correlated and white noise
terms, respectively. The standard deviations of these priors, (𝜎𝑛),
were however chosen to be 0.1 mas. Fig. 12 shows that the analy-
sis is sensitive to changing 𝜎𝑛. Specifically, if 𝜎𝑛 is increased from

0.1 mas to 0.4 mas, the ΘE 16th-84th posterior percentile degrades
by ≈ 1 mas. In contrast, shrinking 𝜎𝑛 to 0.01 mas only marginally
improves the ΘE 16th-84th posterior percentile, by ≈ 0.2 mas. This
sensitivity is reflected in the posterior distributions of the correlated
noise parameters shown in Fig. 9. This is because for the majority
of epochs the size of the correlated noise is not constrained by the
data and defaults to the prior distribution, for the adopted value of
𝜎𝑛 = 0.1, indicating the priors are informative.
However, for epoch 7, the data does inform the value of the size

of the correlated noise forM𝐷𝐶 and the posterior is slightly shifted
to higher values than the prior. This highlights the important balance
between picking a reasonably tight prior to inform the size of the
correlated noise but one that reflects reasonable uncertainty so the
data can alter the value if there is constraining information. The
adopted value of 𝜎𝑛 = 0.1 mas in the analysis strikes a reasonable
balance between our confidence in the size of the correlated noise
at each epoch, whilst also giving sufficient flexibility for the data to
further inform the size of the noise. Overall, the posterior constraint
on ΘE is sensitive to our choice of 𝜎𝑛 = 0.1 mas and our prior
knowledge on the correlated component of the noise in general. We
also investigated changing the boundaries of the flat prior on Θ𝐸

from 20− 60 mas to 0− 100 mas. We found this has no effect on any
of the resulting reported parameter posterior percentiles.

6 THE ASTROPHYSICS OF LAWD 37

At a distance of 4.6 pc, LAWD 37 (WD1142-645, 2MASS
J11454297-6450297,HIP 57367,GaiaDR35332606522595645952,
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WISEA J114547.32-645033.2), is the second nearest single white
dwarf to the sun after van Maanen’s Star. Direct imaging of the re-
gion around LAWD 37 with HST shows no evidence of visible com-
panions down to detection limits (Schroeder et al. 2000). Comparing
Hipparcos and GDR2 astrometry, Kervella et al. (2019) identified a
proper motion anomaly for LAWD 37 which could be explained by
a massive companion. However, upon comparison between Hippar-
cos and the more precise GEDR3 astrometry for LAWD 37, this has
largely been ruled out (Lindegren & Dravins 2021). Overall, at the
present time it appears that LAWD 37 has no detectable companions.
Being a close by and bright target (V-band≈ 11.50), LAWD37 has

been the subject of numerous studies (e.g., Koester & Weidemann
1982;Weidemann&Koester 1995;Dufour et al. 2005; Bergeron et al.
2001; Holberg et al. 2008; Subasavage et al. 2009; Giammichele et al.
2012; Sion et al. 2009; Subasavage et al. 2017; Coutu et al. 2019).
As a result, a wealth of photometric and spectroscopic information
has been gathered. LAWD 37 has a spectral type DQ indicating a
helium dominated atmosphere and the presence of carbon lines in its
spectrum. The presence of carbon in DQ white dwarf atmospheres is
well explained by models of carbon settling and then being caught up
by the helium convection zone bringing it to the surface (Bédard et al.
2022). In line with all helium richwhite dwarfs LAWD37 is expected
to have no or trace amounts of hydrogen which is represented by a
thin hydrogen layer in models, 𝑞𝐻 = 10−10 (Dufour et al. 2005).
The atmospheric parameters of LAWD37 are determined by fitting

DQ-typewhite dwarf atmosphericmodels (Blouin et al. 2018; Blouin
& Dufour 2019) to the broad-band photometry (V,R,I; Subasavage
et al. 2017, J,H,Ks; 2MASS Skrutskie et al. 2006), and spectroscopy
of LAWD 37. The solid angle and 𝑇eff are first adjusted by fitting
the model grid to the photometric data assuming an ad hoc photo-
spheric carbon abundance. During this process, the surface gravity
(and mass) of the star is calculated using the inferred solid angle
of LAWD 37, its distance (from the GEDR3 parallax), and a theo-
retical mass—radius relationship suitable for CO core white dwarfs
with thin hydrogen layers (Bédard et al. 2020). Once a photometric
solution is found, the carbon abundance is then adjusted to match
the spectroscopy while keeping the other parameters fixed. The pho-
tometric fit is then performed once again with this revised carbon
abundance, and the whole process (photometric and spectroscopic
fits) is repeated until a self-consistent solution is reached. We find
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Figure 13. Best fit atmospheric model (red) over the photometric and spec-
troscopic data (black) of LAWD 37. Top: Photometric fit with VRI bands
from Subasavage et al. (2017) and JHK𝑠 bands from 2MASS (Skrutskie et al.
2006).Bottom: Optical spectrum of LAWD37 from (Subasavage et al. 2017).
The photometry and spectrospcopy of LAWD 37 were fit jointly using the
method detailed in Section 4.1 of Subasavage et al. (2017), and we can see
that the models and data are in agreement.

𝑇eff = 7837+83
−82K, log 𝑔 = 7.983 ± 0.016, 𝑅 = 0.0127 ± 0.0003𝑅⊙ ,

𝑀 = 0.57 ± 0.01𝑀⊙ , and log[C/He] = −5.61 ± 0.14 (see Fig. 13).
The use of the MRR in this fitting procedure mainly constrains log 𝑔
and has a minimal effect on Teff, the solid angle, and therefore the
photometric radius determination. This is because the energy distri-
bution is not sensitive to log 𝑔.
The direct gravitational mass determination from the astromet-

ric microlensing caused by LAWD 37 is completely independent of
all atmospheric and evolutionary modeling assumptions. This grav-
itational mass can therefore be used to test the theoretical models.
Fig. 14 shows the position of LAWD 37 on the theoretical MRRs,
obtained from the Montreal theoretical cooling tracks6, using the
gravitational mass from the astrometric microlensing event. Fig. 14
shows excellent agreement between the gravitational microlensing
mass from modelM𝐷𝐶 and predicted value from the evolutionary
theory of CO core white dwarfs, 0.57 ± 0.01𝑀⊙ , and assuming a
thin hydrogen layer. Also plotted in Fig. 14 is the MRR for CO core
white dwarfs with a thick hydrogen layer (not expected for LAWD
37). For comparison, also shown in Fig. 14, is the theoretical MRR
for zero temperature white dwarfs with an iron (Fe) core (Hamada &
Salpeter 1961), which is definitively ruled out by the microlensing
mass.
Coutu et al. (2019) observed that the main peak of the mass dis-

tribution for DQ white dwarfs in their sample was shifted ≈ 0.05𝑀⊙
below to that obtained for the DA and DB white dwarfs, suggesting

6 Obtained from interpolation of the Montreal theoretical cooling
tracks available at https://www.astro.umontreal.ca/~bergeron/
CoolingModels/.

that there could be a problem with the DQ models used in their mass
determinations (the same models as those used here). This suspicion
was supported by comparing their mass for Procyon B determined
with the photometric/spectroscopic method (0.554𝑀⊙) with the dy-
namical mass determination of 0.592𝑀⊙ determined by Bond et al.
(2015). An alternative explanation for the discrepancy between the
mass distributions of DQ white dwarfs and DA/DB stars has recently
been offered by (Bédard et al. 2022, see their Section 4.3) who ar-
gued that although all DB stars likely experience carbon dredge-up,
this phenomenon is more significant — and thus more easily de-
tected — in lower-mass objects, thus explaining the relative deficit
of high-mass DQ stars. The good agreement between our gravita-
tional mass for LAWD 37 and the hybrid photometric/spectroscopic
value reported here yields support to this interpretation, although the
uncertainty on the microlensing mass remains too large to rule out
any systematic problemwith the current DQmodel atmospheres, and
this work centers around the analysis of only one object.
Fig. 14 shows the position of LAWD 37 on the theoretical

Hertzsprung-Russell diagram (luminosity versus effective temper-
ature) along with theoretical cooling tracks (assuming 𝑞𝐻 = 10−10)
from the Montreal database for a range of masses. The position of
LAWD 37 in the Hertzsprung-Russell diagram is in agreement with
the expected position of a white dwarf with the inferred microlens-
ing mass of 0.56 ± 0.08𝑀⊙ . Also shown in Fig. 14 are isochrones
for 1.0, 1.2, and 1.5 ×109years. By interpolation of the Montreal
theoretical cooling tracks, the implied cooling age of LAWD 37 is
1.15 ± 0.04 × 109 years.

7 DISCUSSION AND CONCLUSIONS

We have analyzed HST follow-up data of a predicted astromet-
ric microlensing event caused by the nearby white dwarf, LAWD
37. Specifically, we used WFC3/UVIS HST astrometric data of the
source in combination with Gaia astrometry (GEDR3) of the source
and lens to infer a gravitational mass for LAWD37 of 0.56±0.08𝑀⊙ .
We consider and fit four different models to the data. Models with
and without the astrometric deflection term, and then each with and
without a correlated noise component due to the lens PSF subtraction
within an epoch (M𝐷𝐶 ,M𝐷𝑊 ,M𝑁𝐶 ,M𝑁𝑊 ). We find the model
with the deflection term and correlated noise (M𝐷𝐶 ) best explains
the data according to the overall LOO score.
The model that provides the next best explanation for the data

according to the LOO score is the model without an astrometric
deflection but with correlated noise (M𝑁𝐶 ). This model is able to
provide an explanation for the deflection signal in the 𝑌 direction
by increasing the size of the correlated noise above the prior ex-
pectation and altering the source proper motion in the 𝑌 direction.
Therefore, additional follow-up data on the source after the lensing
event, which would further constrain the source proper motion, will
likely definitively rule out this model.M𝑁𝐶 , however, is unable to
explain the asymmetric deflection signal in the 𝑋 direction. This is
most prominently seen in epoch 2 which has a large signal-to-noise
deflection in the direction opposite to the source 𝑋 proper motion
direction.
The model with the deflection and just white noise,M𝐷𝑊 , pro-

vides a comparatively poor explanation of the data according to the
LOO score.M𝐷𝑊 fails to explain the data in epoch 5 where there is
a predicted high amount of correlated noise from the lens PSF sub-
tractions. The failure in epoch 5 is clear, when compared toM𝑁𝐶 ,
despiteM𝐷𝑊 increasing the size of the white noise and epoch 5 hav-
ing a large deflection signal. Consequently, because the correlated
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noise can mimic the deflection signal,M𝐷𝑊 interprets some of the
unmodeled correlated noise as additional deflection signal and infers
a high mass for LAWD 37 of 𝑀𝐿 = 0.66+0.06

−0.05𝑀⊙ . Overall, we rule
out this model, and its mass inference, due to its poor LOO score
compared withM𝐷𝐶 andM𝑁𝐶 .
We performed checks on the sensitivity of our inferences in our

chosen model,M𝐷𝐶 , to our prior modeling assumptions. We find
that, for M𝐷𝐶 , our inference on 𝑀L is not sensitive to the lens
GEDR3 prior. This means that collecting additional follow-up as-
trometric data on the lens (LAWD 37) to improve its astrometric
solution is unlikely to improve the inference on 𝑀L. In contrast, we
find that, forM𝐷𝐶 , the inference on 𝑀L is sensitive to the GEDR3
prior on the source astrometry. Therefore, we conclude that collecting
additional astrometric data to further constrain the source astromet-
ric solution is likely to improve the inference on 𝑀L by ≈ 3%. For
the noise parameters inM𝐷𝐶 , both correlated and white, we found
our inference on 𝑀L is sensitive to their chosen prior distributions.
We found that simultaneously tightening the prior distributions on
all the noise parameters does not significantly improve the constraint
on 𝑀L.
Overall, we find that the model with the microlensing deflection

signal and correlated noise due to the lens PSF subtraction (M𝐷𝐶 )
provides the best explanation of the data.M𝐷𝐶 provides an inference
of the mass of LAWD 37 of 𝑀𝐿 = 0.56 ± 0.08𝑀⊙ . A no-deflection
and correlated noise model,M𝑁𝐶 , provides a worse but competitive
explanation of the data withM𝐷𝐶 . However,M𝑁𝐶 , has to increase
the size of the correlated noise above our PSF simulation expectations
to explain the data in many epochs. Moreover,M𝑁𝐶 cannot explain
the high signal-to-noise negative 𝑋 direction offset in epoch 2 which
is well explained byM𝐷𝐶 . We therefore conclude the astrometric
deflection signal is present and we measure LAWD 37’s mass to be
𝑀𝐿 = 0.56 ± 0.08𝑀⊙ .
Using the posterior distribution of M𝐷𝐶 , we note our results

are consistent with the event parameters originally predicted by
McGill et al. (2018). The inferred event parameters (vs the predic-
tions from McGill et al. 2018) are: a closes lens-source approach of
396.65±0.17 (380±10) mas, a time of closest lens-source approach
of 2019.86422+0.00004

−0.00005 (2019.86 ± 0.01) Julian year, and a maxi-

mum astrometric shift due to lensing of 2.46 ± 0.34 (2.8 ± 0.1) mas.
The high predicted shift can be attributed to the high photometric
mass estimate for LAWD 37 (0.61𝑀⊙) used in McGill et al. (2018).
The difference in predicted closest approach can be explained by the
poorer quality source astrometry used by McGill et al. (2018), which
was the only source astrometry available at the time.
In conclusion, the gravitational mass for LAWD 37 obtained via

astrometricmicrolensing in this work is in agreement with theoretical
MRRand cooling tracks expected from the evolutionary theory ofCO
core white dwarfs. LAWD 37 is also predicted to cause many more
astrometric microlensing events over the coming decades (Bramich
2018; Klüter et al. 2018b), which may offer further opportunities to
increase the precision of the gravitational mass measurement. This
work provides the first ever semi-empirical test of the white dwarf
MRR for a single, isolated white dwarf and lends support to current
white dwarf evolutionary theory. This work also marks only the third
time that the astrometric microlensing effect has been detected via
the prediction channel.
This analysis reveals how the followup of future predicted astro-

metricmicrolensing events (Bramich 2018;Bramich&Nielsen 2018;
Klüter et al. 2018b; Nielsen & Bramich 2018b) could be improved.
Generally, predicted microlensing events permit targeted and opti-
mised followup campaigns (e.g., Sahu et al. 2017; Zurlo et al. 2018;
McGill et al. 2019b), because the time of maximum signal can be
predicted and hence measurements can be clustered around it. This
seems like a sensible approach in the first instance. However, typical
predictable microlensing events are caused by nearby bright lenses
(Dominik & Sahu 2000). This means usually we will encounter a
scenario similar to this analysis, i.e. where the lens PSF subtraction
introduces significant correlated noise into the data. This correlated
noise is usually worse at closer lens-source separations (see e.g., Ta-
ble 2), when the deflection signal is largest. Moreover, this analysis
shows that the correlated noise can mimic the astrometric deflection
signal. Ultimately this meant that epoch 2 in this analysis, which is in
the tails of the event, was critical for measuring the deflection signal,
more so than the data at the predicted maximum. The utility of epoch
2 was due to a high signal to noise offset in a direction that could not
be explained by alteration of the source’s astrometric parameters.
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With the power of hindsight, the importance of taking observations
at epoch 2’s time could have been determined ahead of planning
the HST observations. This is because all of the lensing systems
parameters (lens and source astrometry and lens mass estimate) were
already known, and the size of the correlated noise introduced by
the lens PSF subtraction could be roughly estimated ahead of time.
However, at the time of closest approach, LAWD 37 was at the edge
of the “sun avoidance zone”, which caused some increased noise, and
also a shortened visibility period during an orbit. The small range of
available ORIENTs at this configuration made it impossible to keep
the diffraction spike too far from the source. This turned out to be the
most important factor in elevating the noise, and there was no way to
avoid this. This aspect of the observation planning is also extremely
difficult to simulate in advance.
In principle, an observation strategywith shorter intervals between

epochs, and with fewer exposures per epoch could be used. This
would provide more constraints on the source astrometry at a greater
range of epochs and hence a degree of redundancy of epoch in the
case that residuals prove to be irremovable. However, in the case of
followup campaigns carried out with HST, including the followup of
the event presented in this paper, one orbit is the minimum that can
be used per visit. A future line of research could work out if HST
(or perhaps even the James Webb Space Telescope; Gardner et al.
2006) observation times which optimally constrain the lens mass
and/or rule out purely correlated noise explanations of the data can
be determined ahead of time. This could be tested on future predicted
microlensing events.
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APPENDIX A: LEAVE-ONE-OUT CROSS-VALIDATION
APPROXIMATION

In this Section we explain how the LOO PSIS approximation is
applied to the models considered in this work. This section closely
followsVehtari et al. (2017) and Bürkner et al. (2020). The goal of the
approximation, given that we have obtained 𝑆 posterior samples from
fittingM𝑇𝑁 to the full data setD, {𝜽𝑠}𝑆𝑠=1, we wish to approximate,

𝑝(𝐷𝑖 |D−𝑖 ,M𝑇𝑁 ) =
∫

𝑝(𝐷𝑖 |𝜽 ,D−𝑖 ,M𝑇𝑁 )𝑝(𝜽 |D−𝑖 ,M𝑇𝑁 )𝑑𝜽 .

(A1)

Specifically, we want to use {𝜽𝑠}𝑆
𝑠=1 to approximately evaluate Eq.

(A1) instead of having to refit themodel (which is expensive) with the
𝑖th data point left-out to obtain {𝜽𝑠−𝑖}

𝑆
𝑠=1. This is achieved by using

an importance sampling approximation and re-weighting {𝜽𝑠}𝑆
𝑠=1

accordingly.
Importance sampling is a Monte Carlo method used to compute

expectations. We would like to evaluate the expectation,

E 𝑓 [ℎ(𝜃)] =
∫

ℎ(𝜃) 𝑓 (𝜃)𝑑𝜃, (A2)

where 𝑓 is some hard-to-sample-from distribution. Instead of using
samples from 𝑓 we can use samples from an easier-to-sample-from
proposal distribution 𝑔, {𝜃𝑠𝑔}𝑆𝑠=1, provided we know the the ratio
between 𝑓 and 𝑔 which is 𝑟 (𝜃𝑠𝑔) = 𝑓 (𝜃𝑠𝑔)/𝑔(𝜃𝑠𝑔). The importance
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sampling approximation is then,

E 𝑓 [ℎ(𝜃)] ≈
∑𝑆

𝑠=1 𝑟 (𝜃
𝑠
𝑔)ℎ(𝜃𝑠𝑔)∑𝑆

𝑠=1 𝑟 (𝜃
𝑠
𝑔)

. (A3)

The quality of this approximation is sensitive to the distribution of
the importance weights, 𝑟 (𝜃𝑠𝑔). If the proposal distribution, 𝑔, is
not representative of the target distribution 𝑓 , then the importance
weights become unstable. This instability comes from the importance
weights being dominated by a few extreme values which leads to
them having a large or infinite variance. Ultimately this leads to a
poor importance sampling approximation (Vehtari et al. 2015). To
mitigate this problem, 𝑟 (𝜃𝑠𝑔) are fitted to a Pareto distribution and
the extreme values are removed and are replaced with draws from
the fitted Pareto distribution, 𝑟 (𝜃𝑠𝑔). These smoothed weights, 𝑟 (𝜃𝑠𝑔),
are dropped in as a replacement for 𝑟 (𝜃𝑠𝑔) in Eq. (A3). This is called
Pareto Smoothed Importance Sampling (PSIS; Vehtari et al. 2015).
In addition to stabilising the importance sample approximation, PSIS
also provides a diagnostic on the quality of the importance sampling
approximation. This diagnostic is the fitted shape parameter, k, of
the Pareto distribution. k traces the number of finite moments of
the importance weights distribution and therefore the quality of the
PSIS approximation. Vehtari et al. (2015) find that 𝑘 < 0.7 indicates
PSIS will work well whereas a value of 𝑘 > 0.7 indicates the PSIS
approximation is likely to be poor and should not be used.
For approximating the LOO score, our hard-to-sample-from target

distribution is 𝑝(𝜽 |D−𝑖 ,M𝑇𝑁 ). This is the posterior distribution
obtained when fitting the model to the data set with the 𝑖th data
point left-out. This is hard to sample from because it is expensive
and we would have to refit the model, which we want to avoid. h is
𝑝(𝐷𝑖 |𝜽 ,D−𝑖 ,M𝑇𝑁 ). Our easy to sample from proposal distribution
is 𝑝(𝜽 |D,M𝑇𝑁 ) which we readily have samples from - {𝜽𝑠}𝑆

𝑠=1.
The only remaining task is to compute the ratio between the target
and proposal distributions.

𝑟 (𝜽) = 𝑝(𝜽 |D−𝑖 ,M𝑇𝑁 )
𝑝(𝜽 |D,M𝑇𝑁 ) ∝ 𝑝(𝜽 |M𝑇𝑁 )𝑝(D−𝑖 |𝜽 ,M𝑇𝑁 )

𝑝(𝜽 |M𝑇𝑁 )𝑝(D|𝜽 ,M𝑇𝑁 ) (A4)

=
𝑝(D−𝑖 |𝜽 ,M𝑇𝑁 )
𝑝(D|𝜽 ,M𝑇𝑁 ) . (A5)

Here we have used Bayes rule which states that the ratio of the
posteriors is proportional to the ratio of the prior× likelihood, and the
priors terms have cancelled. For all models the likelihood factorises
over the different epochs (Eq. 10). If the left-out data point, 𝐷𝑖 , is the
𝑗 th data point in epoch 𝑒, all other epochs cancel from the likelihood
ratio in Eq. (A5) and,

𝑟 (𝜽) ∝ 𝑝(D−𝑖 |𝜽 ,M𝑇𝑁 )
𝑝(D|𝜽 ,M𝑇𝑁 ) =

1
𝑝(𝐷 𝑒̃, 𝑗 |𝐷 𝑒̃,− 𝑗 , 𝜽 ,M𝑇𝑁 ) . (A6)

The ratio is proportional to the inverse of the likelihood of the left-
out data point (Bürkner et al. 2020). In all models considered in
this work, 𝑝(𝐷 𝑒̃, 𝑗 |𝐷 𝑒̃,− 𝑗 , 𝜽 ,M) is the product of two multivariate
Gaussian distributions (in the 𝑋 and𝑌 directions) as described in Eq.
(9). Using the results from Sundararajan & Keerthi (2001), Bürkner
et al. (2020) and Eq. (9), this likelihood can be computed efficiently
as,

log 𝑝(𝐷 𝑒̃, 𝑗 |𝐷 𝑒̃,− 𝑗 , 𝜽 ,M𝑇𝑁 ) = − log 2𝜋𝜎̃𝑒̃, 𝑗

− 1
2𝜎̃𝑒̃, 𝑗

( (
[𝑿 𝑒̃] 𝑗 − 𝑋̃𝑒̃, 𝑗

)2

+
(
[𝒀 𝑒̃] 𝑗 − 𝑌𝑒̃, 𝑗

)2
)
.

(A7)
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Figure A1. Pareto k values in the PSIS-LOO approximation used for each
model. Different colours indicate different models. Different sized makers are
used so points on top of each other can be differentiated. Dashed horizontal
line indicates the threshold value of Pareto k (0.7) used to judge if the im-
portance sampling approximation is reliable. For all models, the importance
sampling approximation fails for the data point with index 54 indicated as a
vertical red line. To obtain the LOO score for data point 54 the model was
refit.

Here, [•] 𝑗 is the 𝑗 th component of vector •. The conditional means,
𝑋̃𝑒̃, 𝑗 and 𝑌𝑒̃, 𝑗 , and conditional standard deviation 𝜎̃𝑒̃, 𝑗 are given by
Bürkner et al. (2020) as,

𝑋̃𝑒̃, 𝑗 = [𝑿 𝑒̃] 𝑗 −

[
(𝚺𝑁

𝑒̃
)−1 (𝑿 𝑒̃ − 𝑿𝑇

𝑒̃
)
]
𝑗[

(𝚺𝑁
𝑒̃
)−1]

𝑗 𝑗

, (A8)

𝑌𝑒̃, 𝑗 = [𝒀 𝑒̃] 𝑗 −

[
(𝚺𝑁

𝑒̃
)−1 (𝒀 𝑒̃ − 𝒀𝑇

𝑒̃
)
]
𝑗[

(𝚺𝑁
𝑒̃
)−1]

𝑗 𝑗

, (A9)

and,

𝜎̃𝑒̃, 𝑗 =
1[

(𝚺𝑁
𝑒̃
)−1]

𝑗 𝑗

. (A10)

Here, we have dropped the dependence of 𝚺𝑁
𝑒̃
, 𝑿𝑇

𝑒̃
and 𝒀𝑇

𝑒̃
on 𝜽

for brevity. [•] 𝑗 𝑗 denotes the 𝑗 diagonal element of the matrix •.
Using these weights with PSIS, we can then approximate Eq. (A1)

for each left-out data point using the posterior samples from the full
dataset, {𝜽𝑠}𝑆

𝑠=1. For each left-out data point, we obtain the Pareto 𝑘
diagnostic. If for any left-out data point 𝑘 > 0.7, we do not use the
PSIS approximation, and instead perform a full refit to evaluate Eq.
(A1) exactly. Fig. A1 shows the Pareto 𝑘 diagnostic for each left-out
data point for all models. For every model the approximation was
reliable for all left-out data points apart from 𝐷53. For all models
we therefore computed this LOO term exactly by refitting the model
with 𝐷53 left-out. Overall, with PSIS, we obtained an approximate
LOO score for each model with only one additional refit of the model
compared to the 81 refits required to compute LOO exactly.
To further check the safety of the PSIS approximation, we com-

puted all LOO terms for the model, M𝐷𝐶 , exactly and compared
them to the PSIS approximation. Fig. A2 shows the comparison of
the PSIS approximation and the exactly computed LOO terms from
M𝐷𝐶 . The PSIS approximationmatches the exact LOO computation
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Figure A2. PSIS approximation versus exact computation of the LOO terms
for M𝐷𝐶 . The PSIS is good agreement with the exact values. The dashed
line is the one-to-one relationship. The data point that failed the PSIS approx-
imation 𝐷53, is marked in red. The approximate CPU computation times for
the exact and PSIS methods are shown as text.

well for all left-out data points apart from 𝐷54. Encouragingly, 𝐷54
is the same data point that was flagged by PSIS as the approxima-
tion being unreliable (Fig. A1). Consequently, the model was refitted
and the exact LOO value was used for 𝐷54. Fig A2 also shows that
the PSIS approximation was ≈ 80 times faster than the exact LOO
computation.
The large negative value of LOO54,M𝐷𝐶

indicates that 𝐷54 is an
outlying data point which is not well predicted byM𝐷𝑊 . The failure
of PSIS approximation for 𝐷54 means that the removal of this data
point changes the posterior by a large amount compared with the
removal of all other data points. This is unsurprising as 𝐷54 belongs
to epoch 7 where the source was close to a charge bleed column
(Fig. 2), and the estimated size of the correlated noise is high (Table
2), due to the specialized fitting procedure used in this epoch (see
Section 2.1). 𝐷54 can also be seen to be the furthest outlying brown
pentagon marker in Fig. 7. Other than 𝐷54’s membership to epoch
7, there is nothing else in the reduction that explains its significant
outlying position. One possible explanation could be that if a cosmic
ray landed at the very center of the source PSF when 𝐷54 was taken,
it could have corrupted the source position and would be very hard
to identify.

APPENDIX B: CONSISTENCY WITH Gaia

This Section contains the full corner plots for both the source (Fig.
B1) and lens (Fig. B2) prior and posterior distributions of their as-
trometric parameters. For both the lens and source, and all models,
it can be seen that the posteriors are in good agreement with the
GEDR3 priors.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B1.GEDR3 priors versus posterior inferences on all source astrometric parameters for all the models considered. The plot is a full version of the densities
shown in Fig. 10.
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Figure B2. GEDR3 priors versus posterior inferences on all the lens (LAWD 37) astrometric parameters for the two deflection models which contain the
astrometry as free parameters. For both these models, the HST data provides no further constraint from GEDR3.

MNRAS 000, 1–21 (2022)


	Introduction
	Data
	HST astrometric measurements
	Gaia astrometric solution

	Models
	Parameterisation of the microlensing signal
	Likelihoods
	Priors
	Sampling the posterior

	Model comparison and criticism
	Leave-one-out cross-validation
	The case for LOO over other comparison metrics

	Results
	Performance of the models
	Inference on the angular Einstein radius
	Prior sensitivity

	The astrophysics of LAWD 37
	Discussion and Conclusions
	Leave-One-Out cross-validation approximation
	Consistency with Gaia

